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Chapter One
1. Propositional Logic and Set Theory

In this chapter, we study the basic concepts of propositional logic and some part of set theory. In
the first part, we deal about propositional logic, logical connectives, quantifiers and arguments.
In the second part, we turn our attention to set theory and discus about description of sets and
operations of sets.

1.1 Propositional Logic

Mathematical or symbolic logic is an analytical theory of the art of reasoning whose goal is to
systematize and codify principles of valid reasoning. It has emerged from a study of the use of
language in argument and persuasion and is based on the identification and examination of those
parts of language which are essential for these purposes. It is formal in the sense that it lacks
reference to meaning. Thereby it achieves versatility: it may be used to judge the correctness of a
chain of reasoning (in particular, a "mathematical proof") solely on the basis of the form (and not
the content) of the sequence of statements which make up the chain. There is a variety of
symbolic logics. We shall be concerned only with that one which encompasses most of the
deductions of the sort encountered in mathematics. Within the context of logic itself, this is

"classical” symbolic logic.

Definition and examples of propositions
Consider the following sentences.

a. 2 isaneven number. b. A triangle has four sides.
c. Emperor Menelik ate chicken soup the night after the battle of Adwa.
d. May God bless you! f.  What is your name?

e. Give me that book.
The first three sentences are declarative sentences. The first one is true and the second one is
false. The truth value of the third sentence cannot be ascertained because of lack of historical
records but it is, by its very form, either true or false but not both. On the other hand, the last
three sentences have not truth value. So they are not declaratives.

Now we begin by examining proposition, the building blocks of every argument. A proposition
is a sentence that may be asserted or denied. Proposition in this way are different from questions,
commands, and exclamations. Neither questions, which can be asked, nor exclamations, which
can be uttered, can possibly be asserted or denied. Only propositions assert that something is (or
is not) the case, and therefore only they can be true or false.
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Definition 1.1: A proposition (or statement) is a sentence which has a truth value (either True or
False but not both).

The above definition does not mean that we must always know what the truth value is. For
example, the sentence “The 1000" digit in the decimal expansion of 7 is 7” is a proposition, but
it may be necessary to find this information in a Web site on the Internet to determine whether
this statement is true. Indeed, for a sentence to be a proposition (or a statement), it is not a
requirement that we be able to determine its truth value.

Remark: Every proposition has a truth value, namely true (denoted by T) or false (denoted by
F).

1.1.1 Logical connectives

In mathematical discourse and elsewhere one constantly encounters declarative sentences which
have been formed by modifying a sentence with the word “not” or by connecting sentences with
the words “and”, “or”, “if . . . then (or implies)”, and “if and only if”. These five words or

b

combinations of words are called propositional connectives.

Note: Letters such as p, g, 1, s etc. are usually used to denote actual propositions.

Conjunction

When two propositions are joined with the connective “and,” the proposition formed is a logical
conjunction. “and” is denoted by “A”. So, the logical conjunction of two propositions, p and q,
IS written:

b

pAq, readas “pandq,” or “p conjunction q”.

p and g are called the components of the conjunction.p A qis true if and only if p is true and q is
true.

The truth table for conjunction is given as follows:

p q PAq
T T T
T F F
F T F
F F F

Example 1.1: Consider the following propositions:
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p: 3is an odd number. (True)
q: 27 is a prime number. (False)
r: Addis Ababa is the capital city of Ethiopia. (True)

a. pAq:3isanodd number and 27 is a prime number. (False)
b. p Ar:3isanodd number and Addis Ababa is the capital city of Ethiopia. (True)

Disjunction

When two propositions are joined with the connective “or,” the proposition formed is called a
logical disjunction. “or” is denoted by “v”. So, the logical disjunction of two propositions, p
and q, is written:

p V q read as “p or ¢” or “p disjunction q.”

p V qisfalse if and only if both p and q are false.

The truth table for disjunction is given as follows:

q |pVq

m T N N

T
F
T
F

NN N

Example 1.2: Consider the following propositions:
p: 3is an odd number. (True)

q: 27 is a prime number. (False)

s: Nairobi is the capital city of Ethiopia. (False)

a. pVgq:3isanodd number or 27 is a prime number. (True)

b. pVs: 27 isaprime number orNairobi is the capital city of Ethiopia. (False)
Note:The use of “or” in propositional logic is rather different from its normal use in the English
language. For example, if Solomon says, “I will go to the football match in the afternoon or I
will go to the cinema in the afternoon,” he means he will do one thing or the other, but not both.
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Here “or” is used in the exclusive sense. But in propositional logic, “or” is used in the inclusive
sense; that is, we allow Solomon the possibility of doing both things without him being
inconsistent.
Implication

When two propositions are joined with the connective “implies,” the proposition formed is
called a logical implication. “implies” is denoted by “=.” So, the logical implication of two
propositions, p and q, is written:

p = qread as “p implies q.”
The function of the connective “implies” between two propositions is the same as the use of “If
... then ...” Thus p = q can be read as “if p, then q.”
p = qis false if and only if p is true and q is false.

This form of a proposition is common in mathematics. The proposition p is called the hypothesis
or the antecedent of the conditional proposition p = q while g is called its conclusion or the
consequent.

The following is the truth table for implication.

" NN
m N TN
N N TN

Examples 1.3: Consider the following propositions:

p: 3is an odd number. (True)

q: 27 is a prime number. (False)

r: Addis Ababa is the capital city of Ethiopia. (True)

p = q: If 3 is an odd number, then 27 is prime. (False)

p = r: If 3 is an odd number, then Addis Ababa is the capital city of Ethiopia. (True)



We have already mentioned that the implication p = q can be expressed as both “If p, then g”
and “p implies q.” There are various ways of expressing the proposition p = g, namely:

If p, then q.
qif p.
pimplies q.
ponly if q.
pis sufficient for q.
qis necessary for p

Bi-implication

When two propositions are joined with the connective “bi-implication,” the proposition formed
is called a logicalbi-implication or a logical equivalence. A bi-implication is denoted by “=".
So the logical bi-implication of two propositions, p and g, is written:

p < q.p © qis false if and only if p and ghave different truth values.

The truth table for bi-implication is given by:

p q9 P<4q

- o NN
N N
N m om0

Examples 1.4:

a. Letp: 2 is greater than 3. (False)

q: 5 is greater than 4. (True)

Then

p & q: 2 is greater than 3 if and only if 5 is greater than 4. (False)
b. Consider the following propositions:

p: 3is an odd number. (True)

q: 2 is a prime number. (True)



p < q: 3isan odd number if and only if 2 is a prime number. (True)
There are various ways of stating the proposition p < q.

pifand only if g (also written as p iff q),

pimpliesq and g implies p,

pis necessary and sufficient for g

qis necessary and sufficient for p

pis equivalent to g

Negation

Given any proposition p, we can form the proposition —p called the negation of p. The truth
value of —p is F if pis T and T if pis F.

We can describe the relation between p and —p as follows.

p —p
T F
F T

Example 1.5: Let p: Addis Ababa is the capital city of Ethiopia. (True)

—p: Addis Ababa is not the capital city of Ethiopia. (False)

Exercises

1. Which of the following sentences are propositions? For those that are, indicate the truth
value.
a. 123 is a prime number. d. Multiply 5x + 2 by 3.
b. 0isaneven number. e. What an impossible question!
c. x2—4=0.

2. State the negation of each of the following statements.
a. /2is a rational number. c. 11lisaprime number.

b. 0 is not a negative integer.
3. Letp: 15isan odd number.
q: 21 is a prime number.
State each of the following in words, and determine the truth value of each.
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a. pvaqg. e. p=4q.
b. pAg. f. q=np.
d pA—gq.

1.1.2 Compound (or complex) propositions

So far, what we have done is simply to define the logical connectives, and express them through
algebraic symbols. Now we shall learn how to form propositions involving more than one
connective, and how to determine the truth values of such propositions.

Definition 1.2: The proposition formed by joining two or more proposition by connective(s) is
called a compound statement.

Note: We must be careful to insert the brackets in proper places, just as we do in arithmetic. For
example, the expressionp = q A rwill be meaningless unless we know whichconnective should
apply first.It could mean(p = q) Aror p = (q A1), which arevery different propositions.The
truth value of such complicated propositions is determined by systematic applications of the
rules for the connectives.

The possible truth values of a proposition are often listed in a table, called a truth table. If p and
q are propositions, then there are four possible combinations of truth values for pand q. That
is,TT, TF, FT and FF. If a third proposition r is involved, then there are eight possible
combinations of truth values for p,q and r. In general, a truth table involving “n” propositions
P1.P2.--.,Pn CONtains 2™ possible combinations of truth values for these propositions and a truth
table showing these combinations would have n columns and 2™ rows. So, we use truth tables to
determine the truth value of a compound proposition based on the truth value of its constituent

component propositions.
Examplesl.6:

a. Suppose p and r are true and g and s are false.
What is the truth value of(p A q) = (r v 5)?

i. Since p istrue and g is false, p A q is false.
ii. Since r istrue and s is false, r V s is true.
iii. Thus by applying the rule of implication, we get that (p A q) = (r V s) istrue.
b. Suppose that a compound proposition is symbolized by
(pVva) = (r= -s)

and that the truth values ofp,q,r, and s are T, F, F, and T, respectively. Then the truth value of
pV qis T, that of —sis F, that of r & —sis T. So the truth value of (p vV q) = (r & —s)isT.

10



Remark: When dealing with compound propositions, we shall adopt the following convention
on the use of parenthesis. Whenever ‘v or “A” occur with “=" or “<=", we shall assume that “
W or “A” is applied first, and then “=" or “~=" is then applied. For example,

pAq=rmeans(pAq) =T

pVqg e rmeans(pVvqg) ©r

—q = —pmeans(—q) = (—p)

—q =>p < rmeans((—q) = p) Sr

However, it is always advisable to use brackets to indicate the order of the desired operations.

Definition 1.3:Two compound propositions P and Q are said to be equivalent if they have the
same truth value for all possible combinations of truth values for the component
propositions occurring in both P and Q. In this case we write P = Q.

Example 1.7:Let P:p = q.

Q:—q = —p.
p q —-p —q9 P=q  —q=-p
T T | F | F T T
T F | F | T F F
F T | T | F T T
F F T T T T

Then, P is equivalent to Q, since columns 5 and 6 of the above table are identical.

Example 1.8:Let P:p = gq.
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Then

p q P 9 | P=q | P=9q

T T F F T T
T F F T F T
F T T F T F
F F T T T T

Looking at columns 5 and 6 of the table we see that they are not identical. Thus P % Q.

It is useful at this point to mention the non-equivalence of certain conditional propositions.
Given the conditional p = q, we give the related conditional propositions:-

q = p: Converse of p = ¢q
—p = —q: Inverse of p = ¢q
—q = —p: Contrapositive of p = q

As we observed from example 1.7, the conditional p = q and its contrapositve —q = —p are
equivalent. On the other hand, p = q £#q = pand p = q # —p = —q.

Do not confuse the contra positive and the converse of the conditional proposition. Here is
the difference:

Converse: The hypothesis of a converse statement is the conclusion of the conditional statement
and the conclusion of the converse statement is the hypothesis of the conditional statement.

Contra positive: The hypothesis of a contra positive statement is the negation of conclusion of
the conditional statement and the conclusion of the contra positive statement is the negation of
hypothesis of the conditional statement.

Example 1.9:

a. If Kidist lives in Addis Ababa, then she lives in Ethiopia.
Converse: If Kidist lives in Ethiopia, then she lives in Addis Ababa.
Contrapositive: If Kidist does not live in Ethiopia, then she does not live in Addis
Ababa.
Inverse: If Kidist does not live in Addis Ababa, then she does not live in Ethiopia.
b. If it is morning, then the sun is in the east.
Converse: If the sun is in the east, then it is morning.
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Contrapositive: If the sun is not in the east, then it is not morning.
Inverse: If it is not morning, then the sun is not the east.

Propositions, under the relation of logical equivalence, satisfy various laws or identities, which
are listed below.

1. Idempotent Laws a pv@ar)=((V

a. p=pVp. QOAN(pPVr).

b. p=pAp. b. pA(qvr)=(@A
2. Commutative Laws qQV(pAT).

a. pAqQ=qAp. S. De Morgan’s Laws

b. pvq=qVp. a. =(pAq) =—-pV—q.
3. Associative Laws b. —-(pVvq)=-pA—q

a. pA(@AT)=(pA 6. Law of Contrapositive

QDAT. P=q=—q=-p

b z)vv(z.v n=@y 7. Complement Law

4, Distributive Laws —~=p) =p.

1.1.3Tautology and contradiction

Definition: A compound proposition is a tautology if it is always true regardless of the truth
values of its component propositions. If, on the other hand, a compound proposition is
always false regardless of its component propositions, we say that such a proposition is a
contradiction.

Examples 1.10:

a. Suppose p is any proposition. Consider the compound propositions p V —pand p A —p.
p -p |PV—p | PA-D
T F T F

F T T F

Observe that p vV —p is a tautology while p A —p is a contradiction.
b. For any propositions pand g. Consider the compound propositionp = (q = p). Let us
make a truth table and study the situation.

13



q=7p

p=(q=0p)

- 4 H

We have exhibited all the possibilities and we see that for all truth values of the constituent
propositions, the proposition p = (g = p) is always true. Thus, p = (q = p) is a tautology.

c. The truth table for the compound proposition (p = q) < (p A —q).

p q9 -9 PA—q

T T F
T F T
F T F
F F T

F

T

T

p=q

p=q) = (pA-q)

F

In example 1.10(c), the given compound proposition has a truth value F for every possible
combination of assignments of truth values for the component propositions pand q. Thus

(p = q) © (p A—q) is a contradiction.

Remark:

1. Ina truth table, if a proposition is a tautology, then every line in its column hasT as its
entry;if a proposition is a contradiction, every line in its column hasF as its entry.
2. Two compound propositions P and Q are equivalent if and only if “P < Q” is a

tautology.
Exercises

1. For statements p, gand r, use a truth table to show that each of the following pairs of

statements is logically equivalent.
a. (pAq) & pandp = q.

b. p=(qvr)and -q = (—p V).
c. (pvg) =rand(p=>qg A(q@=r).
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10.

d p=(@vr)and (—r) = (p = q).
e. p=(qvr)and ((—r) Ap) = q.
For statements p, g, and r, show that the following compound statements are tautology.
a p=(@(Vq.
b. pA(p=q)=q.
c (p=pr@=n)=@=r.
For statements pand q, show that (p A —q) A (p A q) is a contradiction.
Write the contra positive and the converse of the following conditional statements.
a. Ifitiscold, then the lake is frozen.
b. If Solomon is healthy, then he is happy.
c. Ifitrains, Tigist does not take a walk.
Let p and q be statements. Which of the following implies that p V q is false?
a. —p V —qis false. d. p = qistrue.
b. —pV qistrue. e. pAqis false.
C. —p A—qistrue
Suppose that the statements p, q, r, and s are assigned the truth values T, F, F,and T,
respectively. Find the truth value of each of the following statements.

a. (pvq)vr. f. (pvr)e (rA-s).

b. pv(qvr). g (sep)=(—pVs).

c. r= (sAp). h. (gA—s) = (p & 9).

d p=(r=)ys). . (rAs)= (p= (—qVY59)).
e. p=(rvs). . (pv—=qg)Vvr= (sA—s).

Suppose the value of p = gqis T'; what can be said about the value of -p Aq & p Vv q?
a. Suppose the value of p < ¢ is T; what can be said about the values of p & —q and

—p & q?

b. Suppose the value of p < q is F; what can be said about the values of p < —q and

—p & q?

Construct the truth table for each of the following statements.
a p=@=9. e. (p=@AD)V(-pAQ).
b. (pvq) = (qVp). f. (pAq) = ((gA—q) =
C. p=-=(qAr). (rnQq)).

d @=q < (-pVv9.
For each of the following determine whether the information given is sufficient to decide
the truth value of the statement. If the information is enough, state the truth value. If it is
insufficient, show that both truth values are possible.
a. (p=q)=r,wherer=T.
b. pA(q=71),whereq =1r=T.
c. pv(g=r),whereq=r=T.
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d -(pvqg) = (—pA—-q),wherepvq=T.
e. (p=q) = (—q= —p),whereq=T.
f. @WAq) = (pVs),wherep=Tands =F.

1.1.4 Open propositions and quantifiers

In mathematics, one frequently comes across sentences that involve a variable. For
example,x? + 2x — 3 = 0 is one such.The truth value of this statement depends on the value we
assign for the variable x. For example, if x = 1, then this sentence is true, whereas if x = —1,
then the sentence is false.

Definition 1.4: An open statement (also called a predicate) is a sentence that contains one or
more variables and whose truth value depends on the values assigned for the variables. We
represent an open statement by a capital letter followed by the variable(s) in parenthesis, e.g.,

P(x),Q(x) etc.
Example 1.11:Here are some open propositions:

xis the day before Sunday.

yis a city in Africa.

xis greater than y.

x+4=-9.

It is clear that each one of these examples involves variables, but is not a proposition as we
cannot assign a truth value to it. However, if individuals are substituted for the variables, then
each one of them is a proposition or statement. For example, we may have the following.

20 oC

a. Monday is the day before Sunday.
b. London is a city in Africa.
c. 5is greater than 9.
d -13+4=-9
Remark

The collection of all allowable values for the variable in an open sentence is called the universal
set(the universe of discourse) and denoted by U.

Definition 1.5: Two open proposition P(x) and Q(x) are said to be equivalent if and only if

P(a) = Q(a)for all individual a. Note that if the universe U is specified, then P(x) and Q(x) are
equivalent if and only if P(a) = Q(a) forall a € U.

Example 1.12:Let P(x):x2 — 1 = 0.

Q(x):|x| = 1.
16



LetU = {-1,—5,0,1}

Then for all a € U; P(a) and Q(a) have the same truth value.

P(-1):(-1)*-1=0 (T) Q(—=1:|-11=1 (T)
p(-%):(—§)2—1=0 (F) Q(—%):|—§|21 (F)
P(0):0—-1=0 (F) Q(0):10] =1 (F)
P(1):1-1=0 (T) Q(1):]11=1 (T)

Therefore P(a) = Q(a) forall a € U.

Definition 1.6: Let U be the universal set. An open proposition P(x) is a tautology if and only if
P(a) is always true for all values of a € U.

Example 1.13: The open proposition P(x): x2 > 0 is a tautology.

As we have observed in example 1.11, an open proposition can be converted into a proposition
by substituting the individuals for the variables. However, there are other ways that an open
proposition can be converted into a proposition, namely by a method called quantification. Let
P(x) be an open proposition over the domain S. Adding the phrase “For every x € S” to P(x) or
“For some x € S” to P(x) produces a statement called a quantified statement.

Consider the following open propositions with universe .

a. R(x):x?>>0.
b. P(x):(x+2)(x—3)=0.
c. Q(x):x%2<0.
Then R(x) is always true for each x € R,

P(x)is true only for x = —2 and x = 3,
Q(x)is always false for all values of x € R.

Hence, given an open proposition P(x), with universe U, we observe that there are three
possibilities.

a. P(x)istrueforallx € U.

b. P(x)is true for some x € U.

c. P(x)is false forall x € U.
Now we proceed to study open propositions which are satisfied by “all” and “some” members of
the given universe.
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a. The phrase "for every x " is called a universal quantifier. We regard "for every x," "for
all x," and "for each x " as having the same meaning and symbolize each by “(Vx).”
Think of the symbol ¥ as an inverted A(representing all). If P(x) is an open proposition
with universeU, then (Vx)P(x) is a quantified proposition and is read as “every x € U
has the property P.”

b. The phrase "there exists an x " is called an existential quantifier. We regard "there exists
anx," "for some x," and "for at least one x " as having the same meaning, and symbolize
each by “(3x).” Think of the symbol 3 as the backwards capital E(representing exists). If
P(x) is an open proposition with universe U, then (3x)P(x) is a quantified proposition
and is read as “there exists x € U with the property P.”

Remarks:

i. To show that(Vx)P(x)is F, it is sufficient to find at least onea € U such that P(a) is F.
Such an element a € U is called a counter example.
il. (3x)P(x)isF if we cannot find any a € U having the property P.

Example 1.14:

a. Write the following statements using quantifiers.
I. For each real number x > 0,x?> + x — 6 = 0.
Solution: (Vx > 0)(x%2 +x — 6 = 0).
ii. There is a real numberx > 0 such that x2 + x — 6 = 0.
Solution: (3x > 0)(x? + x — 6 = 0).
iii. The square of any real number is nonnegative.
Solution: (Vx € R)(x2 = 0).

i. LetP(x):x%2+ 1 > 0. The truth value for (vx)P(x) [i.e (Vx)(x> +1 > 0)]isT.
ii. Let P(x):x < x2. The truth value for (Vx)(x < x?)is F. x = %is a
counterexample since % € R but % < %. On the other hand, (3x)P(x) is true, since

—1 € Rsuch that —1 < 1.
iii. Let P(x):|x| = —1. The truth value for (3x)P(x) is F since there is no real
number whose absolute value is —1.

Relationship between the existential and universal quantifiers
If P(x) is a formula in x, consider the following four statements.
a. (Vx)P(x). c. (vx)—Px).

b. (3x)P(x). d. (3x)-PX).
We might translate these into words as follows.
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a. Everything has propertyP. c. Nothing has propertyP.
b. Something has propertyP. d. Something does not have propertyP.

Now (d) is the denial of (a), and (c) is the denial of (b), on the basis of everyday meaning. Thus,
for example, the existential quantifier may be defined in terms of the universal quantifier.

Now we proceed to discuss the negation of quantifiers. Let P(x) be an open proposition. Then
(Vx)P(x) is false only if we can find an individual “a” in the universe such that P(a) is false. If
we succeed in getting such an individual, then (3x)—P(x) is true. Hence (Vx)P(x) will be false
if (3x)—P(x) is true. Therefore the negation of (Vx)P(x)is (3x)—P(x). Hence we conclude
that

—(Vx)P(x) = (3x)—P(x).
Similarly, we can easily verified that
—(3x)P(x) = (Vx)—P(x).

Remark: To negate a statement that involves the quantifiers ¥and 3, change each ¥ to 3, change
each Jto ¥, and negate the open statement.

Example 1.15:
Let U = R.

a. —(3x)(x < x?) = (Vx)=(x < x?)
= (Vx)(x = x?).

b. —=(Vx)(4x+1=0)=(3x)-(4x+1=0)
= (3x)4x+1+0).

Given propositions containing quantifiers we can form a compound proposition by joining them
with connectives in the same way we form a compound proposition without quantifiers. For
example, if we have (Vx)P(x) and (3x)Q(x) we can form (Vx)P(x) & (3x)Q(x).

Consider the following statements involving quantifiers. Illustrations of these along with
translations appear below.

All rationals are reals.(Vx) (Q(x) = R(x)).

No rationals are reals.(Vx) (Q(x) = —R(x)).
Some rationals are reals.(3x)(Q(x) A R(x)).
Some rationals are not reals.(3x) (Q(x) A —=R(x)).

oo o

Example 1.16:

Let U = The set of integers.
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Let P(x): x is a prime number.
Q(x): x is an even number.
R(x): x is an odd number.
Then

a. (3x)[P(x) = Q(x)]is T; since there is an x, say 2, such that P(2) = Q(2) is T.
b. (Vx)[P(x) = Q(x)]is F. As a counterexample take 7. Then P(7) is T and Q(7)is F.
Hence P(7) = Q(7).
c. (Vx)[R(x) AP(x)]isF.
d. (VX)[(R(x)AP(x)) = Q(x)]is F.
Quantifiers Occurring in Combinations

So far, we have only considered cases in which universal and existential quantifiers appear
simply. However, if we consider cases in which universal and existential quantifiers occur in
combination, we are lead to essentially new logical structures. The following are the simplest
forms of combinations:

1. (vx)(Vy)P(x,y)
“for all x and for all y the relation P(x, y) holds”;

2. 30)@Y)P(x,y)
“there is an x and there is a y for which P (x, y)holds”;

3. (vo)@yP(xy)
“for every x there is a y such that P(x, y)holds”;

4. 3x)(Vy)P(x,y)
“there is an x which stands to every y in the relation P(x, y).”

Example 1.17:
Let U = The set of integers.
Let P(x,y):x + y = 5.

a. (3x) (3y) P(x,y)means that there is an integer x and there is an integer y such that x +
y = 5. This statement is true when x = 4and y = 1, since 4 + 1 =5. Therefore, the
statement (3x) (3y) P(x,y) is always true for this universe. There are other choices of x

and y for which it would be true, but the symbolic statement merely says that there is at
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least one choice for x and y which will make the statement true, and we have
demonstrated one such choice.

b. (3x) (Vy) P(x,y)means that there is an integer x, such that for every y, x, + y = 5.
This is false since no fixed value of x, will make this true for all y in the universe; e.g. if
Xo = 1,then1 + y = 5 is false for some y.

c. (vVx) (3y) P(x,y) means that for every integer x, there is an integer y such that
x +y =05 Letx = a,theny = 5—a will always be an integer, so this is a true

statement.
d.  (vx) (Vy) P(x,y)means that for every integer x and for every integer y, x + y = 5.
This is false, forif x = 2andy =7, weget2+7 =9 # 5.
Example 1.18:

a. Consider the statement
For every two real numbers xand y,x? + y? > 0.
If we let
P(x,y):x?2+y%2>0

where the domain of both x and y is &, the statement can be expressed as
(Vx € R)(Vy € R)P(x, y)or as (Vx € R)(Vy € R)(x? + y? > 0).

Since x% = 0 and y? > 0 for all real numbers xand y, it follows that x? + y? > 0 and so P(x, y)
is true for all real numbers x and y. Thus the quantified statement is true.

b. Consider the open statement
Plx,y)ilx—1|+|y—2] <2

where the domain of the variable x is the set E of even integers and the domain of the variable y
is the set O of odd integers. Then the quantified statement

(Ax € E)(3y € O)P(x,y)
can be expressed in words as
There exist an even integer x and an odd integer y such that |x — 1| + |y — 2| < 2.
Since P(2,3):1 4+ 1 < 2 is true, the quantified statement is true.

c. Consider the open statement
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P(x,y)xy =1

where the domain of both x and v is the set Q* of positive rational numbers. Then the quantified
statement

(vx € Q")3Ay € QNP (x,¥)
can be expressed in words as
For every positive rational number x, there exists a positive rational number y such that xy = 1.
It turns out that the quantified statement is true. If we replace Q*by R, then we have
(Vx e R)(3y € R)P(x,y) .
Since x = 0 and for every real numbery,xy = 0 = 1, (Vx € R)(3y € R)P(x,y) is false.

d. Consider the open statement
P(x,y): xyis odd

where the domain of both x and y is the set M of natural numbers. Then the quantified statement
(3x € N)(Vy € N)P(x,y),
expressed in words, is

There exists a natural number x such that for every natural numbers y, xy is odd. The statement
is false.

In general, from the meaning of the universal quantifier it follows that in an expression
(vx)(Vy)P(x,y) the two universal quantifiers may be interchanged without altering the sense of
the sentence. This also holds for the existential quantifies in an expression such as
(3x)(3Y)P(x,y).

In the statement (Vx)(3y)P(x,y) , the choice of yis allowed to depend on x - the y that works
for one x need not work for another x.On the other hand, in the statement (3y)(Vx)P(x,y), the
y must work for all x, i.e., y is independent of x.For example, the expression(Vx)(3y)(x < y),
where x and y are variables referring to the domain of real numbers, constitutes a true
proposition, namely, “For every number x, there is a number y, such that x is less that y,” i.e.,
“given any number, there is a greater number.” However, if the order of the symbol (Vx) and
(y) is changed, in this case, we obtain: (3y)(Vx)(x < y), which is a false proposition, namely,
“There is a number which is greater than every number.” By transposing (Vx)and (3y),
therefore, we get a different statement.

The logical situation here is:
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@AY)(vVX)P(x,y) = (Vx)@y)P(x,y).

Finally, we conclude this section with the remark that there are no mechanical rules for
translating sentences from English into the logical notation which has been introduced. In every
case one must first decide on the meaning of the English sentence and then attempt to convey
that same meaning in terms of predicates, quantifiers, and, possibly, individual constants.

Exercise 1.1

1. Ineach of the following, two open statementsP(x,y) and Q(x, y) are given, where the
domain of both x and yis Z. Determine the truth value of P(x,y) = Q(x,y) for the
given values of xand y.

a. P(x,y):x?—y?=0.and Q(x,y):x =y. (x,y) € {(1,-1),(3,4), (5,5)}.

b. P(x,y):|x| = lyl.and Q(x,y):x = y. (x,y) € {(1,2),(2,-2),(6,6)}.

c. P(x,y):ix?+vy?2=1.andQ(x,y):x+y=1.(x,y)€
{(1,-1),(=34),(0,~1), (1L,0)}.

2. Let O denote the set of odd integers and let P(x):x? + 1 is even, and Q(x):x? is even.
be open statements over the domain 0. State (Vx € 0O)P(x) and (3y € 0)Q(x) in words.

3. State the negation of the following quantified statements.

a. For every rational number r, the number % is rational.
b. There exists a rational number r such that r? = 2.
4. Let P(n): ? is an integer. be an open sentence over the domain Z. Determine, with

explanations, whether the following statements are true or false:
a. (Vvn€Z)P(n).
b. (3n € Z)P(n).
5. Determine the truth value of the following statements.
a. (Ax e R)(x?2—x=0). e. @xeR)@AyeR)(x+y=28).

b. (Vx e N)(x+1 = 2). f. @xeR)@yeR)(x?+y2=09).
c. (Vx € R)(Wx? = x). 9. (vx eR)(Fy € R)(x +y =5).
d. (3x € Q)(3x2—27 =0). h. (3x € R)(Vy € R)(x +y = 5)

6. Consider the quantified statement
For every x € Aand y € A, xy — 2 is prime, where the domain of the variables x and y is
A= {3,511}

Express this quantified statement in symbols.

Is the quantified statement in (a) true or false? Explain.

Express the negation of the quantified statement in (a) in symbols.

Is the negation of the quantified in (a) true or false? Explain.

o0 o
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7. Consider the open statement P (x, y):i < 1. where the domain of x is A = {2,3,5} and the

domain of yis B = {2,4,6}.
a. State the quantified statement (Vx € A)(3y € B)P(x,y) in words.
b. Show quantified statement in (a) is true.
8.  Consider the open statement P(x,y):x — y < 0. where the domain of x is A = {3,5,8}
and the domain of yis B = {3,6,10}.
a. State the quantified statement (3y € B)(Vx € A)P(x,y) in words.
Show quantified statement in (a) is true.

1.1.5 Argument and Validity
Definition 1.7: An argument (logical deduction) is an assertion that a given set of statements

P1, P2, P3, -, Pn, Called hypotheses or premises, yield another statement Q, called the
conclusion. Such a logical deduction is denoted by:

P1, P2, P35« Pn F Q or
b1

P2

Pn

oK
Example 1.19:Consider the following argument:

If you study hard, then you will pass the exam.
You did not pass the exam.

Therefore, you did not study hard.

Let p: You study hard.

q: You will pass the exam.

The argument form can be written as:

pP=4q

il
- p

When is an argument form accepted to be correct? In normal usage, we use an argument in order
to demonstrate that a certain conclusion follows from known premises. Therefore, we shall
require that under any assignment of truth values to the statements appearing, if the premises
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became all true, then the conclusion must also become true. Hence, we state the following
definition.

Definition 1.8: An argument form p4, p2, ps3, .., P F Q is said to be valid if Q is true whenever
all the premises p;, p,, s, ..., prare true; otherwise it is invalid.

Example 1.20: Investigate the validity of the following argument:

a. p=0,—ql-—p b. p=0,-q=r|-p
c. Ifitrains, crops will be good. It did not rain. Therefore, crops were not good.
Solution: First we construct a truth table for the statements appearing in the argument forms.

a.
p q |p|q9| P49
T T | F | F T
T F | F | T F
F T |T | F T
F F | T |T T

The premises p = q and —q are true simultaneously in row 4 only. Since in this case p is also
true, the argument is valid.

b.

)

-q =T

I T T T T T
m| NN m| NN
eI I T T
N NN m N NN

IR IEIEIG IR TR
e e I R T T T

"
~
~

F

The 1%, 2", 5" 6" and 7' rows are those in which all the premises take value T. In the 5%, 6™
and 7" rows however the conclusion takes valueF. Hence, the argument form is invalid.

c. Letp: Itrains.
q: Crops are good.

—p: It did not rain.

—q: Crops were not good.
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The argument formis p = q,—p —q

Now we can use truth table to test validity as follows:

p q |—p|q| P=q
T T | F | F T
T F | F | T F
F T |T | F T
F F | T | T T

The premises p = q and —p are true simultaneously in row 4 only. Since in this case —q is also
true, the argument is valid.

Remark:

1. What is important in validity is the form of the argument rather than the meaning or
content of the statements involved.
2. The argument form py, p2, p3, ..., P F Q is valid iff the statement

(p1 Apy Aps A ... Ap, ) = Qis atautology.

Formal proof of validity of an argument

Definition 1.9: A formal proof of a conclusion Q given hypotheses py,p,, ps,....,Pn 1S @
sequence of stapes, each of which applies some inference rule to hypotheses or previously
proven statements (antecedent) to yield a new true statement (the consequent).

A formal proof of validity is given by writing on the premises and the statements which follows
from them in a single column, and setting off in another column, to the right of each statement,
its justification. It is convenient to list all the premises first.

Example 1.21: Show that p = —q, q —p is valid.

Solution:
1. qistrue premise
2. p=>—q premise
3. gq=—p contrapositive of (2)
4. —p Modes Ponens using (1) and (3)

Example 1.22: Show that the hypotheses
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It is not sunny this afternoon and it is colder than yesterday.

If we go swimming, then it is sunny.

If we do not go swimming, then we will take a canoe trip.

If we take a canoe trip, then we will be home by sunset.
Lead to the conclusion:

We will be home by sunset.

Let p: It is sunny this afternoon.

q: It is colder than yesterday.

r: We go swimming.

s: We take a canoe trip.

t: We will be home by sunset.

Then

1. —=pAgq hypothesis

2. —p simplification using (1)

3. r=p hypothesis

4, —r Modus Tollens using (2) and (3)
5, - r=s hypothesis

6. s Modus Ponens using (4) and (5)
7. s=t hypothesis

8. t Modus Ponens using (6) and (7)

Exercises 1.1

1. Use the truth table method to show that the following argument forms are valid.
. —p=—q,q Fp.
ii. p=-—-p,pr=qt-r.
iii. p = q,—r = —q —r = —p.
iV. =1V =s,(—s =p) =71 F-p.
V. p=4q,—p=711T=5Skt-q=Ss5.
2. For the following argument given a, b and ¢ below:
i. Identify the premises.
ii. Write argument forms.
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iii. Check the validity.

a. If he studies medicine, he will get a good job. If he gets a good job, he will get a
good wage. He did not get a good wage. Therefore, he did not study medicine.

b. If the team is late, then it cannot play the game. If the referee is here, then the team
is can play the game. The team is late. Therefore, the referee is not here.

c. Ifthe professor offers chocolate for an answer, you answer the professor’s
question. The professor offers chocolate for an answer. Therefore, you answer the
professor’s question

3.Give formal proof to show that the following argument forms are valid.
a—p = —q,q +p.

b. p = —q,p, v = q F-r.

C.p = q,—r = —q F—r = —p.

d. —rA=s,(=s =p) =71 F-p.

ep =,—p =>711r=S5 Ft-q=S5.

f.—pvqgr=nprtaq.

g—pA-q,(qQVr)= p k.

h. p=(@qVr),—rp tkq.

I.-q = —p,r=p,—q Fr.

4.Prove the following are valid arguments by giving formal proof.
a. If the rain does not come, the crops are ruined and the people will starve. The
crops are not ruined or the people will not starve. Therefore, the rain comes.

If the team is late, then it cannot play the game. If the referee is here then the team can play the
game. The team is late. Therefore, the referee is not here.

1.2 Set theory
In this section, we study some part of set theory especially description of sets, Venn diagrams
and operations of sets.

1.2.1 The concept of a set

The term set is an undefined term, just as a point and a line are undefined terms in geometry.
However, the concept of a set permeates every aspect of mathematics. Set theory underlies the
language and concepts of modern mathematics. The term set refers to a well-defined collection
of objects that share a certain property or certain properties. The term “well-defined” here means
that the set is described in such a way that one can decide whether or not a given object belongs
in the set. If A is a set, then the objects of the collection A are called the elements or members of
the setA. If x is an element of the set4, we write x € A. If x is not an element of the setA4, we
writex ¢ A.
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As a convention, we use capital letters to denote the names of sets and lowercase letters for
elements of a set.

Note that for each objectsxand each setA, exactly one of x €A or x £A but not both must be true.

1.2.2 Description of sets

Sets are described or characterized by one of the following four different ways.

1. Verbal Method
In this method, an ordinary English statement with minimum mathematical symbolization of
the property of the elements is used to describe a set. Actually, the statement could be in any
language.
Example 1.23:
a. The set of counting numbers less than ten.
b. The set of letters in the word “Addis Ababa.”
c. The set of all countries in Africa.
2. Roster/Complete Listing Method
If the elements of a set can all be listed, we list them all between a pair of braces without
repetition separating by commas, and without concern about the order of their appearance.
Such a method of describing a set is called the roster/complete listing method.

Examples 1.24:

a.The set of vowels in English alphabet may also be describedas {a, e, i, 0, u}.
b. The set of positive factors of 24 is also described as {1, 2, 3,4, 6,8,12, 24}.

Remark:

i. We agree on the convention that the order of writing the elements in the list is
immaterial. As a result the sets {a, b, c}, {b, c,a} and {c, a, b} contain the same elements,
namely a, b and c.

ii. The set{a,a,b,b,b} contains just two distinct elements; namely aandb, hence it is the
same set as {a, b}. We list distinct elements without repetition.

Example 1.25:

a.Let A = {a,b,{c}}. Elements of A are a, band {c}.
Notice that cand {c} are different objects. Here {c} € Abut ¢ & A.
b. Let B = {{a}}. The only element of Bis{a}. Buta ¢ B.

c.LetC = {a,b,{a, b}, {a,{a}}}. Then C has four elements.
The readers are invited to write down all the elements of C.
3. Partial Listing Method
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In many occasions, the number of elements of a set may be too large to list them all; and in
other occasions there may not be an end to the list. In such cases we look for a common
property of the elements and describe the set by partially listing the elements. More precisely,
if the common property is simple that it can easily be identified from a list of the first few
elements, then with in a pair of braces, we list these few elements followed (or preceded) by
exactly three dotes and possibly by one last element. The following are such instances of
describing sets by partial listing method.

Example 1.26:

a. The set of all counting numbersis N = {1,2,3,4,...}.

b. The set of non-positive integers is {..., —4,—3,—2,—1, 0}.

c. The set of multiplesof5is{...,—15,-10,-5,0 5,10, 15, ... }.

d. The set of odd integers less than 100 is {...,—3,-1,1, 3,5, ... 99}.

4.Set-builder Method
When all the elements satisfy a common property P, we express the situation as an open
proposition P(x) and describe the set using a method called the Set-builder Method as
follows:
A = {x|P(x)}orA = {x: P(x)}

We read it as “A is equal to the set of all x’s such that P(x) is true.” Here the bar “| * and the
colon “” mean “such that.” Notice that the letter xis only a place holder and can be replaced
throughout by other letters. So, for a property P, the set {x | P(x)},{t | P(t)} and {y |P(y)} are
all the same set.

Example 1.27: The following sets are described using the set-builder method.

A = {x | x is a vowel in the English alphabet}.
B = {t | tis an even integer}.
C = {n| nis anatural number and 2n - 15 is negative}.
D={y|ly*~y-6 = 0}
e. E ={x|xisanintegerandx - 1 < 0 = x%- 4 > 0}.
Exercise: Express each of the above by using either the complete or the partial listing method.

oo oo

Definition 1.10: The set which has no element is called the empty (or null) set and is denoted by
¢gor {}.
Example 1.28: The set of x € R such that x2 + 1 = 0 is an empty set.

Relationships between two sets

Definition 1.11: Set B is said to be a subset of set A (or is contained in A), denoted by B € A, if
every element of B is an element of A4, i.e.,
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(Vx)(x € B= x € A).

It follows from the definition that set B is not a subset of set 4 if at least one element of B is not
anelementof A.i.e., BZ A < (3x)(x € B = x & A). In such cases we write B ¢ Aor A 2 B.

Remarks: For any set A,¢ € Aand A € A.

Example 1.29:

a. IfA = {a,b},B = {a,b,ctand C = {a,b,d},then A< Band A € C. Onthe
other hand, it is clear that: B £ A, B € C and C € B.

b. IfS ={x|xisamultipleof 6}and T = {x | x is even integer}, then S € T since
every multiple of 6 is even. However, 2 € Twhile2 ¢ S. ThusT & S.

c. IfA = {a,{b}} then {a} € Aand{{b}} S A. On the otherhand, sinceb ¢ A, {b} &
A,and {a, b} € A.

Definition 1.12: Sets A and B are said to be equal if they contain exactly the same elements. In
this case, we write A = B. That is,

(Vx)(xe B x €A).

Example 1.30:

a. Thesets{1,2,3},{2,1,3},{1,3,2} are all equal.

b. {x|xisacounting number} = {x|xis a positive integer}
Definition 1.13: Set A is said to be a proper subset of set B if every element of A is also
an element of B, but B has at least one element that is not in A. In this case, we write A C
B. We also say B is aproper super set of A, and write B D A. It is clear that

AcB e [(Vx)(xe A= x € B)A(A # B)].

Remark: Some authors do not use the symbol<. Instead they use the symbol < for both subset
and proper subset. In this material, we prefer to use the notations commonly used in high school
mathematics, and we continue using < and < differently, namely for subset and proper subset,
respectively.

Definition 1.14: Let A be a set. The power set of A, dented by P(A), is the set whose elements
are all subsets of A. That is,

P(A) = {B:B < 4}.

Example 1.31:Let A ={x,y,z}. As noted before, ¢ and A are subset of A. Moreover,
{x},{y}, {2}, {x, v}, {x, z} and {y, z} are also subsets of A. Therefore,
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P(4) = {¢,{x}, v}, {z}, (x, y}, {x, 2}, {y, 2}, A}.

Frequently it is necessary to limit the topic of discussion to elements of a certain fixed set and
regard all sets under consideration as a subset of this fixed set. We call this set the universal set

or the universe and denoted by U.

Exercises 1.2

1. Which of the following are sets?

a. 1,2,3
b. {1,2}3
c. {{1}.2}3

d.
e.

{1.{2}.3}
{1,2,a,b}.

2. Which of the following sets can be described in complete listing, partial listing and/or
set-builder methods? Describe each set by at least one of the three methods.

a. The set of the first 10 letters in the English alphabet.

b. The set of all countries in the world.

c. The set of students of Addis Ababa University in the 2018/2019 academic year.

d. The set of positive multiples of 5.
e. The set of all horses with six legs.

3. Write each of the following sets by listing its elements within braces.

4. Let A be the set of positive even integers less than 15. Findthe truth value of each of the

a. A={x€Z:—-4<x <4}

b. B={x€Z:x?<5}

C. C = {x € N:x3 <5}

d. D ={x e R:x?—x =0}

e. E={x€eR:x?+1=0}.
following.

a. 15€4

b. —16€ A4

c. peA

d 12cA

e. (2,814)eA

f.

g.
h.

I

{234} A
{24} €A
pcA
{246} c A

5. Find the truth value of each of the following and justify your conclusion.

a <o
b. {1,2} < {1,2}
Cc. ¢ € AforanysetA
d. {¢} < A, foranyset A
6. For each of the following set, find its power set.
a. {ab}
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€.
f.
9.
h. {¢} =¢

5,7 € {5,6,7,8}

¢ € {¢}}
ForanysetA,Ac A

{1,1.5}



c. {a b}

20 elements have?

8. Ifn is a whole number, use your observation in Problems 6and 7 to discover a formula for

d. {a,0.5x}
7. How many subsets and proper subsets do the sets that contain exactly 1, 2, 3,4, 8,10 and

the number of subsets of a set with n elements. How many of these are proper subsets

of the set?

9. Isthere a set A with exactly the following indicated property?

a. Only one subset

b. Only one proper subset
c. Exactly 3 proper subsets
d. Exactly 4 subsets

10. How many elements does A contain if it has:

a. 64 subsets?
b. 31 proper subsets?

11. Find the truth value of each of the following.

a. ¢ €P(p)
b. For anyset A,¢ € P(A)

12. For any three sets A, B and C, prove that:
a. IfAcS BandB < C,thenA c C.
b. IfAcBand B c C,thenA c C.

1.2.3 Set Operations and Venn diagrams

Given two subsets A and B of a universal set U, new sets can beformed using A and B in many
ways, such as taking common elements or non-common elements, and putting everything
together. Such processes of forming new sets are called set operations. In this section, three most

e.

f.
g.
h

Exactly 6 proper subsets
Exactly 30 subsets
Exactly 14 proper subsets
Exactly 15 proper subsets

No proper subset?
255 proper subsets?

For any set A,A € P(A)

d. Foranyset A,A c P(A).

important operations, namely union, intersection and complement are discussed.

Definition 1.15: The union of two sets Aand B, denoted by A U B, is the set of all elements that

are either in A or in B (or in both sets). That is,

AUB ={x:(x € A)V (x € B)}.

As easily seen the union operator “U” in the theory of set is the counterpart of the logical

operator “V”.

Definition 1.16: The intersection of two sets A and B, denoted by A N B, is the set of all

elements that are in A and B. That is,

ANB ={x:(x € A)A(x € B)}.
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As suggested by definition 1.15, the intersection operator “f” in the theory of sets is the
counterpart of the logical operator “/\”.

Note: - Two sets A and B are said to be disjoint sets ifA N B = ¢.
Example 1.32:

a. LetA = {0,1,3,5,6}andB = {1,2,3,4,6,7}. Then,
AUuB = {0,1,2,3,4,5,6,7}and An B = {1,3,6}.
b. Let A = The set of positive even integers, and
B = The set of positive multiples of 3. Then,
AU B = {x:x is a positive intger that is either even or a multiple of 3}
= {2,3,4,6,8,9,10,12,14,15,16, ...}
A N B = {x|xisa positive integer that is both even and multiple of 3}
= {6,12,18,24, ...}
= {x | x is a positive multiple of 6. }

Example 1.33:1f = {1,3,5}, B = {1,2},then A — B = {3,5} and B — A = {2}.
Note: The above example shows that, in general, A — B are B — A disjoint.

Definition 1.18:Let A be a subset of a universal set U. The absolute complement (or simply
complement) of A4, denoted by A’ (orA¢orA ), is defined to be the set of all elements of U that
are not in A. That is,

A ={x:xeUNx¢gAlorx €A & x & A —(x €A).

Notice that taking the absolute complement of A is the same as finding the relative complement
of A with respect to the universal set U. That is,

A =U—-A.
Example 1.34:

a. IfU=1{0,1,2,3,4}, and if A = {3,4}, then A" = {3,4}.
b. LetU = {1,2,3,...,12}
A = {x | x is a positive factor of 12}
and B = {x | x is an odd integer in U}.
Then, A’= {5,7,8,9,10,11}, B’= {2,4,6,8,10,12},
(AUB)’= (8,10},A’UB’= {2,4,5,6,...,12},
A’nB’= {8,10}, and (A\B)'= {1,3,5,7,8,9,10,11}.
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c. LetU = {a,b,c,d,e,f,g,h},A = {a,e,g,h}and
B = {b,c,e, f,h}. Then
A’= {b,c,d,f},B’= {a,d,g},B- A = {b,c, [},
A- B = {a,g},and (AU B)' = {d}.
Find (An B)', A’n B’, A’U B'. Which of these are equal?

Theorem 1.1:For any two sets Aand B, each of the following holds.

L(A)'= A. 4. (AUB)'= AB'
2. A= U- A 5. (APB)'= A'LB'
3. A-B = ANB" 6. ACB <o B CA

Now we define the symmetric difference of two sets.

Definition 1.17: The symmetric difference of two sets A and B, denoted by AAB, is the set

AAB = (A—=B) U (B - A).

Example 1.35: Let U = {1,2,3, ...,10} be the universal set, A = {2,4,6,8,9,10}and B =
{3,5,7,9}. Then B — A = {3,5,7}and A — B = {2,4,6,8,10}. Thus AAB = {2,3,4,5,6,7,8,10}.

Theorem 1.2:For any three sets A, B and C, each of the following holds.

AUB = BUA. (VY iscommutative)

ANB = BnA.(Niscommutative)

(AUB)UC = AU (BUC(C).(Uisassociative)

(ANnB)NC = An (B nC).(Nisassociative)

AU(BNC) = (AUB)N (AUC).(Y is distributive over )

® o0 T ®

ANn(BUC)= (AN B)U (AN C).(nisdistributive over U)

Let us prove property “e” formally.
x€AU(BNC) < (x €AV (x € Bn C)(definition of L)

& x €AV (x € BAx € () (definition of n)

& (x€AVx€EB)A(x € AV x € C)(Visdistributive overh)

& (x €A UB)A(x € A UC) (definition of U)

= x€e(AUB)N(AUC) (definition of N)
Therefore, we haveAU (BN C) = (AUB)N (AU 0).

The readers are invited to prove the rest part of theorem (1.2).

Venn diagrams
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While working with sets, it is helpful to use diagrams, called Venn diagrams, to illustrate the
relationships involved. A Venn diagram is a schematic or pictorial representative of the sets

involved in the discussion. Usually sets are represented as interlocking circles, each of which is
enclosed in a rectangle, which represents the universal set U.

U A U

In some occasions, we list the elements of set A inside the closedcurve representingA.

Example 1.36:

a. IfU = {1,2,3,4,5,6,7}and A = {2,4, 6}, then a Venndiagram representation
of these two sets looks like thefollowing.

U | h. LetU =

{x | x is a positive integer less than 13}

A = {x|x € U and x is even}

B = {x|x € U and x is a multiple of 3}.

A Venn diagram representation of these sets is given below.

U
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Example 1.37: Let U = The set of one digits numbers
A = The set of one digits even numbers
B = The set of positive prime numbers less than 10

We illustrate the sets using a Venn diagram as follows.

A B U
0 4 1
8 9
a. Illustrate A N B by a Venn diagram
U

AN B Theshaded portion

b. Illustrate 4’ by a Venn diagram

,

A ’:The shaded portion

C. Illustrate A\B by using a VVenn diagram
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A\ B: The shaded portion

Now we illustrate intersections and unions of sets by Venn diagram.

Cases Shaded is AU B Shaded AN B

Only some B
common elements

- @

No common
element

AnB =g

Exercises 1.3

1. fBS A AnB ={14,5}and AU B = {1,2,3,4,5,6}, find B.
2. LetA ={2,4,6,7,89},

B =1{1,3,5,6,10} and

C ={x:3x+ 6 =00r2x + 6 = 0}. Find

a. AUB.

b. Is(AUB)UC =AU (BUC()?
3. Suppose U = The set of one digit numbers and

A ={x: x is an even natural number less than or equal to 9}
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Describe each of the sets by complete listing method:

a. A d A" g U
b. AnA. e. ¢—U.
c. AUA. f ¢

Suppose U = The set of one digit numbers and
A ={x:x is an even natural number less than or equal to 9}

Describe each of the sets by complete listing method:

a A c. AUA. f. ¢
b. .AnA d. 4" g. U
e. p—U.
Use Venn diagram to illustrate the following statements:
a.(AuB) =A'nB. c.If A € B, then A\B # ¢.
b.(AnB) =A"UB". dAUA =U.
Let A = {5,7,8,9}and C = {6,7,8}. Then show that (A\B)\c = A(B\C).
Perform each of the following operations.
a. ¢n{¢} . {¢.{0}}- (#)
b. {¢,{¢}}- {{o}} d. {{{¢3}}-¢

LetU = {2,3,6,8,9,11,13,15},

A = {x|x is a positive prime factor of 66}

B ={ x € U|xis composite number } and C = {x € U| x - 5 € U}. Then find each of
the following.

ANB,(AUB)NC,(A- B)UC,(A- B)- C,A- (B- C),(A- C)- (B- A),A'nB'nC

9.

LetAUB = {a,b,c,d,e,x,y,z}and ANB = {b,e,y}.
a. IfB-A = {x,z},thenA =
b. IfA-B = ¢,thenB =
c. If B ={beyz},thenA-B =

10. LetU = {1,2,..,10},4 = {3,5,6,8,10},B = {1,2,4,5,8,9},

C =1{1,2,3,4,56,8}%and D = {2,3,5,7,8,9}. Verify each ofthe following.
a. (AUB)UC = AU(BUC).
b. AN(BUCUD) = (ANB)U(ANC)U (AND).
c. ANnBNnCNnD)'=A’UB’UC’UD".
d C-D=CnD"
e. AN(BNC)'= (A-B)U(4- 0).

11. Depending on question No. 10find.

a. AAB. b. CAD.
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c. (AAC)AD. d. (AUB)\ (AAB).
12. For any two subsets A and B of a universal set U, provethat:

a. AAB = BAA. c. AAp= A
b. AAB = (AUB)- (ANB). d. AAA = ¢.
Chapter Two

The Real and the Complex Number System

In everyday life, knowingly or unknowingly, we are doing with numbers. Therefore, it will be
nice if we get familiarized with numbers. Whatever course (which needs the concept of
mathematics) we take, we face with the concept of numbers directly or indirectly. For this
purpose, numbers and their basic properties will be introduced under this chapter.

2.1 The real number System

2.1.1 The set of natural numbers

The history of numbers indicated that the first set of numbers used by the ancient human beings
for counting purpose was the set of natural (counting) numbers.

Definition 2.1.1

The set of natural numbers is denoted by N and is described as N ={1,2,3,...}

2.1.1.1 Operations on the set of natural numbers
i) Addition (+)

If two natural numbers a & b are added using the operation “+”, then the sum a+b is also a
natural number. If the sum of the two natural numbers a & b is denoted by c, then we can write
the operation as: ¢ = a+b, where c is called the sum and a & b are called terms.

Example: 3+8 = 11, here 11 is the sum whereas 3 & 8 are terms.
ii) Multiplication (x)

If two natural numbers a & b are multiplied using the operation “x”, then the product axb is
also a natural number. If the product of the two natural numbers a & b is denoted by c, then we
can write the operation as: ¢ = ax b, where c is called the product and a & b are called factors.

Example 2.1.3: 3x4 =12, here 12 is the product whereas 3 & 4 are factors.

Properties of addition and multiplication on the set of natural numbers

i. For any two natural numbers a & b, the sum a+b is also a natural number. For instance in the
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above example, 3 and 8 are natural numbers, their sum 11 is also a natural number. In general,
we say that the set of natural numbers is closed under addition.

ii. For any two natural numbersa & b,a+b=Db +a.

Example 2.1.1: 3+8 = 8+3 = 11. In general, we say that addition is commutative on the set of
natural numbers.

iii. For any three natural numbers a, b & ¢, (a+b)+c = a +(b+c).
Example 2.1.2: (3+8)+6 = 3+(8+6) = 17. In general, we say that addition is associative on the set
of natural numbers.

iv. For any two natural numbers a & b, the product ax b is also a natural number. For instance in
the above example, 3 and 4 are natural numbers, their product 12 is also a natural number. In
general, we say that the set of natural numbers is closed under multiplication.

v. For any two natural numbers a & b, axb = bxa.

Example 2.1.4: 3x4 = 4x3 = 12. In general, we say that multiplication is commutative on the
set of natural numbers.

vi. For any three natural numbers a, b & ¢, (axb) xc =ax (bxc).

Example 2.1.5: (2x4) x5 =2x (4x5) = 40. In general, we say that multiplication is associative
on the set of natural numbers.

vi. For any natural number a, it holds that ax1 = 1xa =a.

Example 2.1.6: 6x1 = 1x6 = 6. In general, we say that multiplication has an identity element on
the set of natural numbers and 1 is the identity element.

vii. For any three natural numbers a, b & ¢, ax (b+c) = (axb)+(axc).

Example 2.1.7: 3x(5+7) = (3x5)+ (3x7) = 36. In general, we say that multiplication is
distributive over addition on the set of natural numbers.

Note: Consider two numbers a and b, we say a is greater than b denoted by a>b ifa—b is
positive.

2.1.1.2 Order Relation in N
i) Transitive property:
For any three natural numbersa, b &c, a>b&b>c=a>c
ii) Addition property:
For any three natural numbersa,b &c, a>b=a+c>b+c
iii) Multiplication property:
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For any three natural numbers a, band ¢, a>b =ac >bc
iv) Law of trichotomy

For any two natural numbersa & b we have a>bora<bora=>0b.

Factors of a number
Definition 2.2

If a, b, ce N such that ab=c, then a and b are factors (divisors) of ¢ and c is called product
(multiple) of a& b.

Example 2.8: Find the factors of 15.
Solution: Factors of 15 are 1, 3, 5, 15. Or we can write it as: F;={1,3,5,15}

Definition 2.3 A number a e N is said to be

i. Even if it is divisible by 2.

ii. Odd if it is not divisible by 2.

iii. Prime if it has only two factors (1 and itself).

iv. Composite: if it has three or more factors
Example 2.9: 2,4,6,... areeven numbers
Example 2.10: 1, 3,5, ... are odd numbers
Example 2.11: 2, 3,5, ... are prime numbers
Example 2.12: 4, 6, 8, 9, . . . are composite numbers

Remark: 1 is neither prime nor composite.

2.1.1.3 Prime Factorization
Definition 2.4

Prime factorization of a composite number is the product of all its prime factors.

Example 2.9:

a)6=2x3 b)30=2x3x5 €)12=2x2x3=2°x3 d)8=2x2x2=2°
e) 180 = 2% x3? x5

Fundamental Theorem of Arithmetic:

Every composite number can be expressed as a product of its prime factors. This factorization is
unique except the order of the factors.
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2.1.1.4 Greatest Common Factor (GCF)

Definition 2.5

The greatest common factor (GCF) of two numbers a & b is denoted by GCF (a, b) and is the
greatest number which is a factor of each of the given number.

Note: If the GCF of two numbers is 1, then the numbers are called relatively prime.

Example 2.10: Consider the two numbers 24 and 60.

Now F,, ={123 4,6,8,12, 24 }
and F,={1 2 3,4,5,6,10, 12,15, 20, 30, 60 }
Next F,, "Fy, ={1,2,3,4,6,12 } from which 12 is the greatest.

Therefore, GCF(24, 60) = 12.
This method of finding the GCF of two or more numbers is usually lengthy and time consuming.

Hence an alternative method (Prime factorization method) is provided as below:
Step 1: Find the prime factorization of each of the natural numbers

Step 2: Form the GCF of the given numbers as the product of every factor that appears in each of

the prime factorization but take the least number of times it appears.

Example 2.11: Consider the two numbers 24 and 60.

Stepl: 24 =2°x3
60 = 2% x3x5

Step 2: The factors that appear in both cases are 2 and 3, but take the numbers with the least
number of times.

GCF (24, 60) = 2* x3 =12
Example 2.12: Consider the three numbers 20, 80 and 450.

Stepl: 20 = 2° x5
80=2*x5
450 = 2x 3% x 52

Step 2: The factors that appear in all cases are 2 and 5, but take the numbers with the least
number of times.

43



GCF (20, 80, 450) = 2x5=10

2.1.1.5 Least Common Multiple (LCM)
Definition 2.6

The least common multiple (LCM) of two numbers a & b is denoted by LCM (a, b) and is the
least number which is a multiple of each of the given number.

Example 2.13: Consider the two numbers 18 and 24.

Now M, = {18, 36, 54, 72,90, 108, 126, 144, --- |
and M,, ={ 24, 48, 72, 96,120, 144, --- }
Next M;; "M, ={ 72, 144, ...} from which 72 is the least.

Therefore, LCM (18, 24) = 72.
This method of finding the LCM of two or more numbers is usually lengthy and time consuming.
Hence an alternative method (Prime factorization method) is provided as below:

Step 1: Find the prime factorization of each of the natural numbers

Step 2: Form the LCM of the given numbers as the product of every factor that appears in any of

the prime factorization but take the highest number of times it appears.

Example 2.14: Consider the two numbers 18 and 24.
Stepl: 18 =2°x3°
24=2°x3

Step 2: The factors that appear in any case are 2 and 3, but take the numbers with the highest
number of times.

LCM (18, 24) =2° x3* =72

Example 2.15: Consider the three numbers 20, 80 and 450.

Stepl: 20 = 2° x5
80=2*x5
450 = 2 x 3? x 52

Step 2: The factors that appear in any cases are 2 , 3 and 5, but take the numbers with the highest
number of times.
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LCM (20, 80, 450) = 2* x 32 x 52 = 3600

2.1.1.6 Well ordering Principle in the set of natural numbers

Definition 2.7
Every non-empty subset of the set of natural numbers has smallest (least) element.

Example 216 A={2,34,---}c N. smallest element of A=2.
Note: The set of counting numbers including zero is called the set of whole numbers and is
denoted by W. i.e W ={0,1,23,...}

2.1.1.7 Principle of Mathematical Induction
Mathematical induction is one of the most important techniques used to prove in mathematics. It
is used to check conjectures about the outcome of processes that occur repeatedly according to

definite patterns. We will introduce the technique with examples.

For a given assertion involving a natural number n, if
I. the assertion is true for n = 1 (usually).

ii. it is true for n = k+1, whenever it is true for n =k (k>1), then the assertion is true for every
natural number n.

The method is used to prove different propositions involving positive integers using three steps:
Stepl: Prove that T, (usuallyT,) holds true.

Step 2: Assume that T, for k =nis true.

Step 3: Show that T, is true for k = n+1.

Example 2.17 Showthat 1+3+5+---+(2n—-1) =n°.

Proof:
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Stepl. For n=1, 1=1° which is true.
Step2. Assume that it is true for n=k
ie. 1+3+5+---+(2k-1)=k>.
Step3. We should show that it is true for n=k +1.
Claim:1+3+5+---+(2k =1) + (2k +1) = (k +1)*
Now 1+3+5+---+(2k-1)+(2k +1) =k* + (2k +1)
=k?+2k+1
= (k +1)* which is the required result.

. It is true for any natural number n.

Example 2.18 Showthat 1+2+3+---+(n) = M

Proof:

1(1+1)

Stepl. Forn=1, 1= which is true.

Step2. Assume that it is true for n =k
k(k+1)
—
Step3. We should show that it is true forn=k +1
(k+1)(k+2)
Y,
k(k+1)
2

e, 1+2+3+---+(k) =

Claim:1+2+3+---+(k)+ (k+1) =

Now 1+2+4+3+---+(k)+(k+1)= +(k+1)

_ k(k+1)+2(k+1)
2
_ (k+1)(k+2)

which is the required result.

- It is true for any natural number n.

Example 2.19 Show that 5" +6" <9" for n>2.

Proof:
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Stepl. For n=2, 61<81 which is true
Step2. Assume that it is true for n=Kk.
ie. 5 +6" <9
Step3. We should show that it is true for n=k +1
Claim: 5 +6"* < 9",
Now 5! +6" =5.5* +6.6" <6.5" + 6.6
=6(5" +6%)
<9(5" +6)
<9(9k) —gk#t
=5 +6" <9**  which is the required format.
. It is true for any natural number n> 2,

2.1.2 The set of Integers

As the knowledge and interest of human beings increased, it was important and obligatory to
extend the natural number system. For instance to solve the equation x+1= 0, the set of natural
numbers was not sufficient. Hence the set of integers was developed to satisfy such extended

demands.
Definition 2.8

The set of integers is dented by Z and describedas Z = {...,-2, -1, 0,1,2, ...}

2.1.2.1 Operations on the set of integers

i) Addition (+)

If two integers a & b are added using the operation “+”, then the sum a+b is also an integer. If
the sum of the two integers a & b is denoted by c, then we can write the operation as: ¢ = a+b,

where c is called the sum and a & b are called terms.
Example 2.20: 4+9 = 13, here 13 is the sum whereas 4 & 9 are terms.
ii) Subtraction (-)

For any two integers a & b, the operation of subtracting b from a, denoted by a—b is defined by
a—b=a+(-b). This means that subtracting b from a is equivalent to adding the additive
inverse of b to a.

Example 2.21: 7-5=7+(-5)=2
iii) Multiplication (x)
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If two integers a & b are multiplied using the operation “x”, then the product axb is also an
integer. If the product of the two integers a & b is denoted by c, then we can write the operation

as: ¢ = axb, where c is called the product and a & b are called factors.

Example 2.22: 4x 7 = 28, here 28 is the product whereas 4 & 7 are factors.
Properties of addition and multiplication on the set of integers

I. For any two integers a & b, the sum a+b is also an integer. For instance in the above example,
4 and 9 are integers, their sum 13 is also an integer. In general, we say that the set of integers is
closed under addition.

ii. For any two integers a & b, a+b = b+a.

Example 2.23: 4+9 = 9+4 = 13. In general, we say that addition is commutative on the set of
integers.

iii. For any three integers a, b & ¢, (a+b)+c = a+(b+c).

Example 2.24: (5+9)+8 = 5+(9+8) = 22. In general, we say that addition is associative on the set
of integers.

iv. For any integer a, it holds that a+0 = 0+a = a.

Example 2.25: 7+0 = 0+7 = 7. In general, we say that addition has an identity element on the set
of integers and 0 is the identity element.

v. For any integer a, it holds that a+(—a) =—a+a=0.

Example 2.26: 4+-4 = -4+4 = 0. In general, we say that every integer a has an additive inverse
denoted by —a.

vi. For any two integers a & b, the product axb is also an integer. For instance in the above
example, 4 and 7 are integers, their product 28 is also an integer. In general, we say that the set

of integers is closed under multiplication.

vii. For any two integers a & b, axb = bxa.

Example 2.27: 4x7 = 7x4 = 28. In general, we say that multiplication is commutative on the set
of integers.

viii. For any three integers a, b & ¢, (axb) xc =ax (bxc).

Example 2.28: (3x5) x4 = 3x (5x4) = 60. In general, we say that multiplication is associative
on the set of integers.
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ix. For any integer a, it holds that ax1 =1xa =a.

Example 2.29: 5x1 = 1x5 = 5. In general, we say that multiplication has an identity element on
the set of integers and 1 is the identity element.

x. For any three integers a, b & ¢, ax (b+c) = (axb)+(axc).

Example 2.30: 4x(5+6) = (4x5)+ (4x6) = 44. In general, we say that multiplication is
distributive over addition on the set of integers.

2.1.2.2 Order Relation in Z
i) Transitive property: For any three integersa,b &c, a>b&b>c=a>c

ii) Addition property: For any three integersa, b &c, a>b=a+c>b+c

iii) Multiplication property: For any three integers a, b and c, where ¢>0, a >b =ac > bc
iv) Law of trichotomy: For any two integers a & b we have a>b or a<bor a=»hb.
Exercise 2.1

1. Find an odd natural number x such that LCM (x, 40) = 1400.

2. There are between 50 and 60 number of eggs in a basket. When Loza counts by 3’s, there
are 2 eggs left over. When she counts by 5’s, there are 4 left over. How many eggs are
there in the basket?

3. The GCF of two numbers is 3 and their LCM is 180. If one of the numbers is 45, then find
the second number.

4. Using Mathematical Induction, prove the following:

a) 6" —1 is divisible by 5, for n>0.

b) 2" <(n+1)!, for n>0

c) x"+y" is divisible by x+y for odd natural number n>1.

d) 2+4+6+---+2n=n(n+1)

e)1*+2°+3°+---+n’ = n(n+1n+1
6
f) 13+23+33+...+n3 =M
4
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1 1 1 1 n
+ + et =
1x2 2x3 3x4 n(n+1) n+1

9)

2.1.3 The set of rational numbers
As the knowledge and interest of human beings increased with time, it was again necessary to

extend the set of integers. For instance to solve the equation 2x+1= 0, the set of integers was not
sufficient. Hence the set of rational numbers was developed to satisfy such extended needs.
Definition 2.9

: a . .
Any number that can be expressed in the formB, where a and b are integers and b # 0, is called

a rational number. The set of rational numbers denoted by Q is described by

Q= {%:a and b are integers and b;tO} :

Notes:

. . a . : .
i. From the expression b a is called numerator and b is called denominator.
ii. A rational number % is said to be in lowest form if GCF (a, b) = 1.

2.1.3.1 Operations on the set of rational numbers
i) Addition (+)

If two rational numbers a/b and c/d are added using the operation “+”, then the sum defined

a ad +bc . .
as —+—= is also a rational number.

<
b d  bd
1.3 11

Example 2.31: —+—-=—
2 5 10

ii) Subtraction (-)
For any two rational numbers a/b& c/d, the operation of subtracting c/d from a/b, denoted
by a/b- c/dis defined by a/b-c/d = a/b+(-c/d).

Example 2.32: 1.3_-1
2 5 10

iii) Multiplication (x)
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If two rational numbers a/b and c/d are multiplied using the operation “x”, then the product

defined as E>< c_a is also a rational number.
b d bd
Example 2.33: %XE 3

10
iv) Division (+)

For any two rational numbers a/b&c/d, dividing a/bby c/d is defined by

—+—:E><9, c=0.
b d b c

Example 2.34: %—g = %xg = g
Properties of addition and multiplication on the set of rational numbers
Let a/b, c/d and e/ f be three rational numbers, then
i. The set of rational numbers is closed under addition and multiplication.
ii. Addition and multiplication are both commutative on the set of rational numbers.
iii. Addition and multiplication are both associative on the set of rational numbers.
iv. 0 is the additive identity
ie.,, a/b+0=0+a/b=alb.
v. Every rational number has an additive inverse.
ie, a/b+ (-a/b) = —a/b+a/b =0.
vi. 1 is the multiplicative identity
ie.,, a/lbxl=1xal/b =al/b.
vii. Every non-zero rational number has a multiplicative inverse.
ie., albx b/a=b/axalb=1.

2.1.3.2 Order Relation in Q

i) Transitive property

For any three rational numbersa/b, c/d & e/ f a/b>c/d &c/d>e/f —=al/b>e/f.
i) Addition property

For any three rational numbersa/b, c/d & e/ f a/b>c/d = al/b+e/f >c/d+e/f.

iii) Multiplication property
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For any three rational numbersa/b, c/d, e/ fand e/ f >0
alb>c/d = (al/b)e/f)>(c/d)(e/f).

iv) Law of trichotomy

For any two rational numbers a/b& c/d we have a/b>c/d or a/b<c/d or a/b=c/d.

2.1.3.3 Decimal representation of rational numbers

A rational number % can be written in decimal form using long division.
Terminating decimals

. 25 . :
Example 2.35: Express the fraction number 75 in decimal form.

Solution : ? =6.25

Non-terminating periodic decimals

Example 2.36: Express the fraction number % in decimal form.

Solution : % —8.333.--

Now we will see how to convert decimal numbers in to their fraction forms. In earlier
mathematics topics, we have seen that multiplying a decimal by 10 pushes the decimal point to
the right by one position and in general, multiplying a decimal by 10" pushes the decimal point to

the right by n positions. We will use this fact for the succeeding topics.

2.1.3.4 Fraction form of decimal numbers

A rational number which is written in decimal form can be converted to a fraction form as % in
lowest (simplified) form, where a and b are relatively prime.

Terminating decimals

Consider any terminating decimal number d. Suppose d terminates n digits after the decimal
point. d can be converted to its fraction form as below:
10"
n )
10

Example 2.37: Convert the terminating decimal 3.47 to fraction form.

d=dx1=dx%=dx(
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2
Solution ; 3.47 =3.47 x % = ﬂ
10 100

Non-terminating periodic decimals
Consider any non-terminating periodic decimal number d. Suppose d has k non-terminating
digits and p terminating digits after the decimal point. d can be converted to its fraction form as

below:

10%P —10*

1
R A T T

Example 2.38: Convert the non-terminating periodic decimal 42.538 to fraction form.
Solution: k=1, p=2.

1 10%P —10%

cd=dxl=dx-=dx(o 10, 42538.38-425.38 42113
. 1 10k+p _10k

3—10)_ 1000 -10 © 990

) = 42.538 % (10
10

Note: From the above two cases, we can conclude that both terminating decimals and non-

terminating periodic decimals are rational numbers. (Why? Justify).

2.1.3.5 Non-terminating and non-periodic decimals
Some decimal numbers are neither terminating nor non-terminating periodic. Such types of

numbers are called irrational numbers.

Example 2.39: 62.757757775....

Example 2.40: Show that V2 is an irrational number.

Proof:

Suppose\/f is a rational number

= 2:%, where GCF (a,b) =1

= a’is even
= aliseven

53



Putting this in (*) we get:
= 4n* = 2b°
= b? =2n?
= b? is even
=Dbis even

=b=2m............ (***)

From (**) and (***) we get a contradiction that GCF (a, b) = 1 which implies that \/5 is not a
rational number.

Therefore, /2 is an irrational number.

2.1.4 The set of real numbers

Definition 2.10
A number is called a real number if and only if it is either a rational number or an irrational
number.

The set of real numbers denoted by R can be described as the union of the set of rational and

irrational numbers. i.e R={x : x is a rational number or an irrational number}.

There is a 1-1 correspondence between the set of real numbers and the number line (For each

point in the number line, there is a corresponding real number and vice-versa).

2.1.4.1 Operations on the set of real numbers

i) Addition (+)

If two real numbers are added using the operation “+”, then the sum is also a real number.
ii) Subtraction (-)

For any two real numbers a& b, the operation of subtracting b from a, denoted by a—bis
defined by a—b = a+(—b).

iii) Multiplication (x)

If two real numbers a and b are multiplied using the operation “x”, then the product defined as
axb=ab is also a real number.

iv) Division (+)

For any two real numbers a& b, dividing aby bis defined by a+b = ax%, b =0.
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Properties of addition and multiplication on the set of real numbers
Let a, b and c be three real numbers, then

I. The set of real numbers is closed under addition and multiplication.
ii. Addition and multiplication are commutative on the set of real numbers.
iii. Addition and multiplication are associative on the set of real numbers.
iv. 0 is the additive identity
e, a+0=0+a = a.
v. Every real number has an additive inverse.
ie., at (-a) =—-ata=0.
vi. 1 is the multiplicative identity
e, axl=1xa =a.
vii. Every non-zero real number has a multiplicative inverse.

ie., ax l/a=1/axa =1

2.1.4.2 The real number and the number line
One of the most important properties of the real number is that it can be represented graphically

by points on a straight line. The point O is termed as the origin. Points right of O are called
positive real numbers and points let of O are called negative real numbers. Each point on the

number line corresponds a unique real number and vice-versa.

3
4 25 4.75
& L g 1 & ; .

Geometrically we say a is greater than b if a is located to the right of b on the nuber line.

2.1.4.3 Order Relation in R
i) Transitive property: For any three real numbersa, b& c,a>b &b>c = a>c.

ii) Addition property: For any three real numbersa, b& ¢, a>b = a+c>b+c.

iii) Multiplication property: For any three real numbersa, b, cand ¢ >0, we have

a>b —ac>hbc.
iv) Law of trichotomy: For any two real numbers a& bwe have a>b or a<b or a=h.

Summary of the real number system
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Real numbers
.

Rational Irrational
numbers 025 numbers
—2 0.3 Nz

Integers 17
- —3,—2 —1
T

Whole numbers
(]

MNatural
numbers

— —

2.1.4.4 Intervals
Let a and b be two real numbers such that a<b, then the intervals which are subsets of R with

end points a and b are denoted and defined as below:

i. (a,b)={ x:a<x<b} open interval from a to b.

ii. [a,b]={ x:a<x<b} closed interval from a to b.

ii. (a,b]= { X:a< X <b} open-closed interval from a to b,

iv. [a,b)={ x:a<x<b} closed-open interval from a to b.

2.1.4.5 Upper bounds and lower bounds
Definition 2.11
Let A be non—empty and Ac Q.

i. A point a € Ris said to be an upper bound of A iff x <a forall x e A
ii. An upper bound of A is said to be least upper bound (lub) iff it is the least of all upper bounds.
iii. A point a e Ris said to be lower bound of A iff x> a forall xe A

ii. A lower bound of A is said to be greatest lower bound (glb) iff it is the greatest of all lower
bounds.

Example 2.41 Consider the set A=[2, 5)c R.

56



1) lower bounds are ---, =9, -3, 0, o 1,2

Here the greatest element is 2.
sogb=2

il) upper bounds are 5, 6, 2—35 20, 99,1000---

Here the least element is 5.
o lub =5.

Example 2.42: Consider the set A = {%} forne N.

-

i) lower bounds are ---, -3, -2,0
Here the greatest element is 0.Thus, glb =0

Solution: A= {1,

N
W

i) upper bounds are 1, 3, g 50, ---

Here the least element is 1.Thus, lub =1.

Based on the above definitions, we can define the completeness property of real numbers as
below.

2.1.4.6 Completeness property of real number (R)
Completeness property of real numbers states that: Every non-empty subset of R that has lower

bounds has glb and every non-empty subset of R that has upper bounds has a lub.
Exercise 2.1

1. Express each of the following rational numbers as decimal:

4 3 11 2 2
a) — b) — c) = d)-5-— e) —
)9 )25 )7 ) 3 )77

2. Write each of the following as decimal and then as a fraction:

a) three tenths b) four thousands

3. Write each of the following in meters as a fraction and then as a decimal

a) 4mm  b) 6cmand 4mm ¢) 56cm and 4mm

4. Classify each of the following as terminating or non-terminating periodic
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5 7 69 11 5
a) — b) — c) — d) — e) —
)13 )10 )64 )60 )12

5. Convert the following decimals to fractions:

a) 3.25 b) 0.314 c) 0.275

6. Determine whether the following are rational or irrational:

= 1
a) 2.75 b) 0.272727--- c) V8 5
7. Which of the following statements are true and which of them are false?

a. The sum of any two rational numbers is rational

b. The sum of any two irrational numbers is irrational

c. The product of any two rational numbers is rational

d. The product of any two irrational numbers is irrational

8. Find two rational numbers between
2.2. Complex Number

Introduction
Solving algebraic equations has been historically one of the favorite topics of mathematicians.
While linear equations are always solvable in real number, but not quadratic equations have this
property; for instance x?> + 1 = 0 has no real solution. Until the 18" century mathematicians
avoid quadratic equation that were not solvable over real number. LEONHARD EULER broke
this idea and introducing the number v/—1 and denotes this number by i and called an imaginary
unit. This becomes one of the most useful symbols in mathematics and useful symbol to define
complex number. The study of complex numbers continues and has been enhanced in the last
two and half centuries, in fact it is impossible to imagine modern mathematics without complex
number.
Our main goal is to introduce about complex number, the unit runs smoothly between key
concepts and elementary results concerning complex numbers, the student has the opportunity to
learn how complex numbers can be employed in solving algebraic equations and to understand
the geometric interpretation of complex number and the operations involving them.

Definitions=A complex number z is given by a pair of real numbers x and y and written as
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z = x + iy which is Cartesian form of a complex number and denoted by C.
C = {x + yi:x and y are real numbers and i = /—1}
Where, i = V-1 = i? = —1,x is a real part of z and denoted by Rez and y is the imaginary part
of z and denoted by Imz.
If y = 0 then the complex number is purely real number and if x = Othen the number is purely
imaginary.

The figure below illustrates the relationships between complex numbers

Complex number x + iy

Pure real Numbers Non real
x+iy, y=0 Complex Number

Other non Real
Complex Number
x + iy,x+0,y

# 0

Pure imaginary
Number
x +iy,x =0,y

The Argand Diagram

The complex number may be represented as point in the coordinate plane sometimes called the
Argand Diagram. The real number 1 is represented by the point (1, 0) and the complex number
i is represented by the point (0, 1). In general the complex number z = x + iy represented by
the point (X, y) on the coordinate plane, where the horizontal axis (x-axis) represent a complex
number x + iy with y = 0, we call this horizontal axis the real axis and the vertical axis (y-
axis) represent a complex number x + iy with x = 0, we call this axis the imaginary axis.
These two perpendicular axes intersect at a point ‘O’ which is called the origin. The set of real
number was extended to the set of complex numbers so that real number is the proper subset of

complex number.
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2.2.1 Operations on Complex Number
I. Addition, Subtraction and Multiplication of Complex Number
There are two methods to determine the sum and difference of two complex number; these are
e Algebraic method.
e Graphical method using the Argend Diagram.
Algebraic Method
Ifzy = x; + iy,andz, = x, + iy, Then,
e z,= zyifandonlyifx; = x,and y; =y,
e The sum and difference of complex numbers algebraically

Zl=Z1+Z2= X1+ iy1+x2 + lyz

Z;=(x1+x2)+ i(y1

Zy =2y —2Z; = x;+ iy, — (X, + iy;)

Z; = (x1—x2)+ i(y1

The real terms are added or subtracted and the imaginary terms are added and subtracted

separately.
e The product of complex numbers algebraically

Zy =kz, = kx; + iky,, forallk € R

Zg = kZl = kx1 + lkyl

Zy =212 = (x1+ 1y1)(x2 + 1y3)
= X1Xy + X101y, + (Y1X; + Y10y,

=x1X3 + (1Y, + y1%2) + iz}’l)’2

Zy =217y = (X1X3 — y1Y2) + i(x1Y2

ReZ, = x1x; — y1Y2

ImZ, = x1y; + y1x;

Example; operate the following
a. (A+7) +(1—-6)=A+1)+(7—-6)i=5+i
b. (14+2)—(@4+2)=01-4)+2-2)i=-3+0i=-3
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¢ (I+D(V3—-i)=1+V3+1x—i+i*V3+ix—i
=V3—-i+V3i—i?=v3—1+(V3-1)i
=3+ + (V3-1i
Activity 2.1
Express each of the following in the form of x + iy
a. 1—-i+4+3id. (2+3i))—(B3-=5)+4+30)
I. Graphical method using the Argend Diagram
If we have two complex numbers z = x +iy and w = u + iv then their sum z+w and
difference z — w are given by
z+w = (x+u)+i(y +v)
z—w = (x—u)+i(y —v)
And therefore appears on the Argand Diagram as the vector sum of z and w
The complex number z+ w is represented geometrically as the fourth vertex of the

parallelogram formed by O, z, and w,

O « » Roal

Imaginary
Properties of Addition and Multiplication of Col. .

Addition and multiplication of complex numbers satisfies the following properties

e Commutative law
Z1+z,=72,+12
{ 1h e 1forallzl,zze(C
Z1XZy = ZyXZq
e Associative law

{(Zl + Zz) + Z3 = Zl + (ZZ + Z3)

ll eC
(21X23)X 23 = 71X (22X Z3) forall 2,25, 73

e Additive and Multiplicative identity
For any complex number z = (x,y) € C,there are unique complex numbers
1=(1,0)and 0 = (0,0) € C,
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Such that,

{Z+ 0=0+z= Zforallz €C
zx1 = 1%z = z

e Additive and Multiplicative inverse
For any complex number z = (x,y) € C there are unique complex numbers
-z=(—x,—y)andz™! = (x7l,y™h € C,
Such that,
{ z+ (-z) = (—2)+z=0
zxzl = z7lxz = 1
1

Tofindz=l === (x7,y7D,

z
Observe that z = x + iy # 0 = x # 0 ory # 0, equivalentlyx? + y? # 0
The relation zx z~| = 1, gives
(x+iy)«(x+iy)=1+0i
(xx7 ' —yy ) +i(yx™ + xy~) = 1 + 0i, equivalently
{xx" —yyl=1
yx~l+xy=l =0
Solving the system with respect tox ~landy~! we obtain
-y
x% +y?

x
———andy™ =

-l —
x| =
x2+y

Hence, the multiplicative inverse of the complex number z = x + iy is

1 x .y
z7 === —i
z x?+y%? x2+y?

Example; Let z = 1+2i then Find the additive and multiplicative inverse of z

Solution; x=1,y=2andx? + y2 =12 + 22 =1+ 4 = 5, then

X 1 dv-l — -y =2
x _x2+y2_5any x24y2 5
- — 1 X .=y 1 .2 . T . .- .
z7l =-=—5——i——— =-—i-and—1 — 2i are multiplicative and additive inverse of
z x“+y x“+y 5 5

z =1+ 2i, respectively.
e Distributive law
(z1x(2y + 23) = 721XZ, + 21XZ3. forall z,,7,, 73 € C
Activity 2.2
Find the additive and multiplicative inverse of -2 -3i
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2.2.2 The Conjugate and Modulus of Complex Number

The Conjugate of Complex Number

Let z = x + iywhere x ,y € Rthe conjugate of z is denoted by z and is equal toz = x — iy.

= The conjugate of z = —x — iy iISZ = —x + iy.
Note:
e The product of a complex number and its conjugate is always real and positive.
(x —iy)(x + iy) = x? + y?
e Ifzisreal, Z =z, i.e; z is its own conjugates
It is necessary to represent these complex numbers in an Argand Diagram. The conjugate of z =

x + iy is the reflection of z on the x — axis.

Example: multiply each complex number by its conjugate
a. 1+ib. 4—-3i
Solution;
a(l+D)A - =1x1+1x(-) +ix1+i(-i) =1—-i+i—i’2=1-(-1) =2
b.(4 —3i)(4 + 3i) = 4x4 + 4x3i + (—=3i)x4 + (-3i)(3Bi) =16 —i?9 =16 +9 = 25
Activity 2.3
Multiply complex number3i (3+5i) by its conjugate

2.2.3 The Modulus of Complex Number

The modulus (absolute value) |z|of a complex number z =

x + iy is its distance from the origin. If z = x + iy,then

z| = Jx2+y2 = |z|? =x2+y? =zZ
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2.2.4 Quotient of Complex Number

When the complex number is expressed as a quotient which contains i in the denominator; it is
necessary to multiply a quotient complex expression by the quotient conjugate of the
denominator in order to obtain a real quantity in the denominator.

Let z be the quotient of two complex numbers

_x+iy, *
Z - x2+iy2 ( )

It required to express the complex number in the form ofa + bi, where a and b are real, multiply
(*) by the quotient conjugate ofx, + iy,, we have;

Xt iy X — iy,

Z = —. ;
X+ 1Y, X — LY,

. . .2
_ XX H XY =YX — 7YY

x,% — (iy)?
_ X1X + 1(XY1—Y2%1) + Y1 V2
X% + YZZ

P + 1y1 XX+ y1Y2: | X2Y1—Y2Xq

Xyt iy, X2 4y, X% + Y52
xX1X1 + X —V,X
— ReZ = a = 2 "2 gpgimg = p = 221X
X2+ X%+ Y,

Square Root of a Negative Number
For any positive real number “a”

V=a = V=1va = iva is called the principal squareroot of —a
With this convention the usual derivation and formula for the roots of the quadratic equation
ax? + bx + c = 0 are valid even b? — 4ac < 0
In general if we allow complex number as solution, any quadratic equation ax? 4+ bx +c¢ =0
with real coefficients a, b and ¢ has solutions and these solutions are always complex conjugates
of each other. It is also true that every polynomial equation

Apx™ + ap_ x4+ ———a;x+a, =0

of degree at least two has a solution among the complex number.
Example: Find the roots of the equation

x°+x+1=0
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Solution:a=1,b =1andc =1

_—bt+Vb2—4ac -1+V1i-4 -1+iV3

x 2a 2 2
X =_—1+i£orx=_—1—i§
2 2 2 2
are solutionsof x2 +x +1 =0
Activity 2.4

Solve3x2 —2x+5=10
Note: when simplifying or performing operations involving radicals with a negative radicand and
even index, it is important to write the numbers in terms of the imaginary uniti, if possible. The
property,/a x+/b = vaxb is only true when a > 0 andb > 0. This property does not apply to
non-real numbers. To find the correct answer, if a and b are negative we must first write each
number in terms of the imaginary uniti.
Example:vV=3xvV—4 = /(=3) x (—4) = V12 = 2V3
IS not true, but it is true that
V=3 V=4 =iV3*ivd =i?2V3=-2V3

Fundamental Properties of |z|andz

i |zI?=x%+y%?=12zz

Ifz = x + iythen
Izl =yx2+y2= |z =x*+y2 = (x +iy)(x—iy) = zZ

|z|? = zZ
Z+z dl zZ—Z
andImz =
2 20

Ifz = x + iythen

ii. Rez =

z+zZ = (x+iy)+x—-iy)=2xz—zZ=x+1iy) — (x —iy)

Z+Zz _ zZ—Z
= = — 7 =V =
X > iy=2z—2 y T
z+Z zZ—Z
= Re = = Imz = 2

iii. z+w=z+w
Ifz = x + iyandw = u + ivthen
z+w = (x+iy) +tu+tiv = (x+u)+i(y +v)
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ztw=x+u)—-ily+v)=x+u)—-ily+v)=x+u—iy—iv

=x—iytu—iv=z+w.

Z+w=ZzZ+w
iv. zZw = zwlfz = x + iyandw = u+ivthen
Zw = (x +iy)(u+iv) = (xu—yv) +i(xv+yu) zw = (x — iy)(u — iy)
Zw = (xu — yv) — i(xv + yu) = (xu—yv) —i(xv +yu)
= ZW = ZW
2.4 Polar Form of Complex Numbers
We know that any complex number z = x + iy can be considered as a point (x, y) and any such
point can be represented by polar coordinates (r, 8) withr = 0

yA
X+iy= (X, y)
r

0 X

v

sin =¥=y=rsin9

X
cos =—= x=rcosf
r

r= X E 7
z= x+1iy= rsinf + ircos8 =r(cosf + isind)

= z = r(cos @ + isinB) is polar form of a complex number z = x + iy

Wherer =|z| = \/x2 +y? ,tanf = % and @ is an angle formed by a vector of complex number

z = x + iy Through the origin and measured with the reference to the positive x-axis in an
anticlockwise direction.

The angle 6 is called the argument of z and we write & = arg(z). Note that arg(z) is not
unique, any two argument of z differ by an integer multiple of 27 (i.e arg(z) = 0 + 2nm,n €

R). But the principal argument of z is unique which is an argument of z that lies between
—1 and 7 and denoted by Arg(z).

l.e-m<Arg(z)<m
Example: Write the following numbers in polar form

a. 1+i b. V3 —i
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Solution; a. 1+

r=x2+y?=./(1)2+(1)? =v2 and

1 T
tan0 = 4 = 6 = arctan (X) = arctan (—) = arctan(1) = 45° = —
X X 1 4

I I
z = r(cos 6 + ising) = V2 (sinz + cos Z) ispolarformofz =1+1

b. V3 —i (exercise)
The polar form of complex number gives insight into multiplication and division.

Let z; = ry(cos 6;) + isinb,) and z, = r,(cos 6,) + isin6,) are two complex numbers written
in polar form, then

z,2, = (ry(cos 0, + isinb,))(r,(cos O, + isinb,))
= r1y(cos B, + isinb,) (cos B, + isinh,)
= ry1,[(cos 6, cos 6, — sinb,sinb,) + i(sinb,cosb, + sinb,cosb,)]

= T1T2[COS(91 + 62) + isin (61 + 92)]

Z1Zy = 7'17'2[003(01 + 02) + isin (01 + 02)]

z, 11(cos B +isinB,) 1y cosO; +isinf; cosb, —isinb,
— = ) =— — X .
z, T1y(cos@, +isinB,) r,cosb, +isind,  cosB, — isinb,

__ 1ip(cos 81 +isin6;)x(cos Bz—isinez)]
- 15 -(cos B, +isinB;)x(cos 6, —isinb,)

r_l[cos 61cos6,—cos 04isinf,+isinf, cos O,—isinf,isinb, ]
T (cos 8;)%—(isin 6,)2

_n [cos 9100592—izsinelsinez+i(sin9100592—coselsinez]
T c0s2%0,+sin20,

= 2 [c0s(6; — 0;) + isin (6; — 0)| - = 7[00 (81 — 8) + isin (8, — 62)]

Z3

In particular letz; = 1 andz, = z,thenf; = 0, 6, = 6, we have the following

If z = r(cos6 + isin®) then

1 1 o
—=—(cos 0 — isin0)
zZ T
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Activity 3.5
1. Write the complex number -1 in polar form.
2. Write the complex number 8(cos135%+ isin135°) in rectangular form

Exponential form of Complex Number
Euler’s Formula

el® = cos0 + isind
Therefore,

z = r(cosO + isin0)
i

=re
Where r is the modulus of z and 6 is the argument of z.
Powers of Complex Numbers
The trigonometric form of a complex number is used to raise a complex number to a power. To
accomplish this, consider repeated use of the multiplication rule.
z=r(cosé + isinH)
7%= r(cos@ + isind) x r(cos@ + isiné)
= r%(cos26 + isin26)
7%= r(cos2 0+ isin26) x r (cosé + isind)
= r3(cos34 + isin36)
7%= r *(cos4 0 + isin4 )

7°=r>(cos58 + isin56)

This pattern leads to DeMoivre’s Theorem

If z = r(cos © + isin 0) and n is any positive integer, then

z" = r"(cosnb + isin nB)

Activity 2.6

Compute (%i)8

1.6.2, Square Root of Complex Number

Let z = x+ iy, then the square root of z = x+iy is denoted by m and

Let, /x + iy = +(a + ib), then squaring on both sides, we get

x+iy = (a+ib)? = a? — b? + 2abi
=x=a?’—-b*andy=2ab————————— — — — (D)
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From (*)and (*x*)

From (1) and (2)

2_

b > )
VX2 +y2 —x

b= "2

Therefore

JxZ+yZ4+x JxZ+y2—x
,/x+iy=i(a+ib)=i\/ Zy +i\/ Zy

Example; find the square root of 3 + 4i
Solution; x = 3,y =4
let\V3 + 4i = +(a + ib)

\/w/x2+y2+x \/\/m+3 \/\/9+—1+3 f+
a: = =

2 2 2
b_jm_x_jm— Jm )
_ yiox 2 / _

= V3+4i=+(a+ib) =+(2+1i)
69



Activity 2.7
Verify that 3 — 7i is one of the square roots of —40 — 42i

The n'" Roots of a complex Number
Defining the n' roots of a complex number, consider a positive integer n > 2 and a complex

numberz, # 0. As in the field of real numbers, the equation

is used for defining the n™" roots of the complex number z,. Hence we call any solution Zof the
equation (A) is an nroot of the complex numberz,.

Theorem;

Let zo = r(cosO + isin 0)be a complex number with r >0 and 6€ [0, 2r).The number zyhas n
distinct n'" roots, given by the formulas

n 0+2knr. 0+ 2knm
7, = \/F[COS(T) + isin (T)],k =012,..,n—1

Proof; we use the polar representation of the complex number Z with the extended
argumentgpandmodulusofZisp.
Z = p(cos¢p + ising).
By definition, we have Z™ = zo or equivalently
p"(cosng + isin nd) =r (cos@ + isin B)

6+2km

’
n

We obtain p" = r and n¢ = 8+2kn, for k € Z; hence p="3/r and ¢ = fork € Z.

So far the roots of equation (A) are

0 + 2km 0 + 2km
Zy, = Nr(cos¢, +ising,) = W(COST + isin —)

Now observe that 0 < ¢po< $p1<- - - < dn-1<27, SO the numbers ¢k, where ke{0, 1, ..., n— 1}, are
reduced arguments. Until now we had n distinct roots of Z. Such as;Zo, Z1, . . . ,Zn-1.
Example, Let us find the third roots of the number z = 1 + .

Solution; The polar representationof z = 1 + i is
x=1Ly=1r=x?+y>=412+12 = V2and

y 1 s
Arg(z) =6 = arctan; = arctan (I) = arctan1 = 7
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z=12 (cos% + isin%)

Z, = i/ji(cos(—+k—) +Lsm(—+ k ))
—\/_(COS(—+k—)+lSIIl( +k?ﬂ))
For, k=0, 1, 2

e T 2n. . . om 21 e
ZO—\/f(cos(ﬁ+0*—)+lsm(—+0*?)) —\/f(c0512+151nﬁ)

T 1x2 T 1x2m 3 3
Zl=§/§(cos(ﬁ+ )+lsm(12+ 3 ))=V§(cosr+isin7)

Z—Vf( n+2x2n+ <n+2x2n))_§/§( 7T+47r+__ n+4n)
) = cos(12 ) + isin 12 3 = cos(12 3) Lsm(12 3)
17n 17z
f(cos?+151nﬁ)
Exercise 2.2

1. Express each of the following in the form of x + iy
a. (1+0)(3—4i) c. 6iC+2i)
b. 2(1+4i)—-32+1) d. (5—2i)?
2. Find the additive and multiplicative inverse of
a. 4+3i b.5-3i
3. multiply each complex number by its conjugate
a 42 b. iv21
4. solve x?+4=0

5. Write each of the following in polar form.
a. 3-3i b, 1— i3

6. Write each of the following in rectangular form
a. 4(cos30%+isin30°) . 5 (cos150° + isin150°)
b. V2(cos225° + isin225°) d. 5(cos450°+ isin450°)

7. Let z =+2(c0s225° + isin225%and z, = %(cos 150° + isin150°), then find
Z1Z, and 2_1
2

8. Compute the following
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a. (3(cos15° + isin15%3c. (cos1%+isin19)3° b, (/3 —i)3
9. Find the square root of 3- 2i
10. Find the fourth root of the numberz=1-iandz =i

11. Find the solution of each of the following

a. z°=32 c.(z—2)3=125
bh. z*=+3+i d.z =1
Unit Three

Further on Functions
3.1. Types of Functions and their Graphs

3.1.1 Polynomial Function

Introduction

In this section you will study the definition of polynomial function, basic operations on
polynomial function, theorems on polynomial and the graphs of polynomial functions.

Definition of polynomial function

Definition: - A polynomial is an algebraic expression that can be written in the form of
apx™ + a,_;x™ 1+ -+ a,x? +a;x+ ag,wherenn —1,n — 2, ...,2,1,0 areelements
ofthesetofwholenumbersa,,a,, a, ,.... a, are elements of the set of real numbers,

Degreen” and x is variable.

Example: - Each of the following is a polynomial expression

a. 1x,x?%,x3,..
b. x+1,x*>+x+1,3x3 4x%+5, ...
c. V8x5+25x* +nx2+ 0.5

Note that:- Zero polynomial is the only polynomial which has no degree.
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Types of Polynomials over Z[x], Q[x], R[x]
A polynomial a,x™ + a,_;x™" 1 + -+ a,x? +a;x+ a,, issaid to be
1. A polynomial is over the set of integers if all the coefficients ay,a;,a, ,.... a, € Z
The set of polynomials over Z is denoted by Z[x]

2. A polynomial over the set of rational numbers if all the coefficient s ay,a;, a; ,....
ap €Q

The set of polynomials over Q is denoted byQ|[x]
3. A polynomial over the set of real numbers if all the coefficients ay,a,,a, ,.... a, ER
The set of polynomial over R is denoted by R[x]
Examplel:-

ax,x3+4x —1,10x%® —3x%2 + 11 € Z[x]becausel € Z,1,4,—1 € Z,10,—-3,11 € Z

b. %x,x3 — 4x +% ,x7 —13x+0.71 € Q[x]because% € Q, 1,—4,% €0,1,—-13,0.71 € Q
c.m?, mx? + \/ng — 7 € R[x]becausen € R, 7,2 € R,g, —7€R

Note: Z[x] c Q[x] < R[x]

Definition:-Let n be anon-negative integers and a,,, a,_1, .. .....,a,, a4, a, be real numbers with
a, # 0. The function p(x) = a,x™ + a1 x" 1+, ...,a;x +

a, is called apolynomial function

in variable x of degree n.

v Note that: In the definition of polynomial function

p(x) = apx™ + ap_1 x4, ., a4x + ag

.  a,a,_q,.....,0, a4, aare the coefficient of polynomial function and which are an
element of the set of real numbers . The number anis called the leading coefficient of the
polynomial function anda,x™ is the leading term. The number ap is called the constant
term of the polynomial.

Il. n, n1 n2, ...,2 1, 0 are the exponents of the polynomial function and which are
elements of the set of whole numbers (hon —negative integers ). The number n (exponent
of the highest power of x) is the degree of the polynomial.

Note that:- the domain of any polynomial function is the set of all real numbers.

73




Example: - which one of the following are polynomial functions? For those which are
polynomials, find the degree, leading coefficient and constant term

a f(x)=2x>—-x+7 d.f(x)=’;zi:
b. f(x)=% e. f(x) =2x"*—x?+8x+ 17
c. glx) == ff(x) =/(x + 1)2

Solution

a. Itis a polynomial function of degree 2 with leading coefficient 2, leading term 2x? and
constant term 7
b. It is a polynomial function of degree 1 with leading coefficient % leading term % and

constant term 0.
c. Itis not a polynomial function because one of its domain is not real number
2
d flx)= ;:: =1, so it is a polynomial function of degree 0 with leading coefficient 1,
leading term 1 and constant term 1.
e. Itis not a polynomial function because one of its terms has negative exponent.

f(x)=(x+1)2 =|x+ 1], so it is not polynomial because it cannot written in the
formof p(x) = apx™ + a1 x™ 1+, ...,a1x + a
Activity 3.1

In each of the following polynomials list the leading coefficient, the degree and constant term .

a. 5x%+46x+7d.x1%0 -5
b. x6—x7 —x2%+2x e. 2x+1)3
c. 0 f. 10

3.1.1.1 Basic operations on polynomial function
A. Addition of polynomials

You can add polynomial functions in the same way as you add real numbers simply add like
terms by adding the like terms adding their coefficients.

Example: Let, f(x) = x> +x*+6x+7 g(x) = x3 + 2x% — 4x1,then find f(x) + g(x)
Solution
f)+gx)=@3+x*+6x+7)+ (x3+2x*—4x—1)

=x*+x3+x3+2x%+6x—4x+7-1
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=x*+ 2x342x?> —4x + 6
B. Subtraction of polynomials

If f(x)and g(x) are two polynomials then the difference off(x)and g(x)is found by
subtracting the coefficient of the similar terms that is denoted by f(x)-g(x)

Example: - Let f(x) =2x3 —5x?2+x— 7 g(x) = x* —x3 + 5x? + 6x ,then
find f(x) — g(x)

Solution:-f(x) —g(x) = 2x3 —5x2+x—7) — (x* —x3+5x2 + 6x )

=2x3—-5x*+x—7—x*+x3—-5x2—6x

=—x*+2x3+x3-5x?+x—6x—7
= —x*+3x3—-10x2-5x—7
The difference of two polynomial functions f and g is written as f — g and defined as
(f —g) such that (f — g)(x) = f(x) — g(x)forallx € R
v Note that:- If the degree off is not equal to the degree of g , then the degree of

(f — g)(x)is the degree of f(x) or the degree g)(x) whichever hasthe highest
degree. If they have the same degree, however, the degree of (f — g)(x)might be lower
than this common degree when they have the same leading coefficient.

Example:-- Let f(x) = x* + 3x3 — x%2 + 4 and g(x)x* — x3 + 5x% +
6x,then find the degree of (f — g)(x)

Solution: f(x) —g(x) = (x*+3x3 —x?2+4) — (x* — x3 + 5x? + 6x)
=x*+3x3—x?+4—x*+x3—5x%—6x
=xt—x*+3x3+x3—x%2—-5x2—-6x+4

= 4x3 — 6x% — 6x + 4This is a polynomial function of degree 3

C. Multiplication of polynomials

e If f(x) and g(x)are two polynomials then the product of
f(x) and g(x)is denoted by f(x).g(x). To multiply two polynomial functions,
multiply each term of one by each term of others.
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Example:- Let f(x) = 2x3 —2x? + 3x — 2 and g(x) = x3 — 2x + 1 , then find f(x)g(x).
Solution:-f(x)g(x) = 2x3 —2x?+3x—2)(x3—2x+ 1)
=2x3(x3—2x+1)—2x?(x>—2x+1 ) +3x(x>—2x+1)—-2(x>—-2x+1)
=2x% — 4x* + 2x3 — x° + 2x32x% — x? + 3x* — 6x% + 3x — 2x3 + 4x — 2
=2x% —x% —4x* + 3x* + 2x3 + 2x3 — 2x3 — x? — 6x2 + 3x + 4x — 2
=2x0 — xS —x*+2x3 —x2+7x—2
The product of two polynomial functions f and g is written as f. g and define as
(f.9)(x) =f(x).gx)forallx €R
v' Note that: — The degree of the product of two polynomials f(x) and g(x)
is the sum of the degreeof f(x)and g(x) where f(x) # 0 and g(x) # 0.

D. Division of Polynomials

e In dividing a polynomials one by the we use long division and we should continue until
the remainder is zero polynomial or a polynomial of lower degree than the of divisor.

e Suppose we have two polynomialsN (x)of degree nand D(x) of degree m, where n >
m when we divide N(x) by D(x) we obtained a quotient Q(x) and a remainder R(x).
i.eDividend = (divisor)(quotient) + remainder

N(x) = D(x)Q(x) + R(x)
Long Division Method
When you are asked to divide one polynomial by another, stop the division process when
you get a quotient and remainder that polynomial and degree of the remainder is less than
the degree of the divisor
Example 1:- Divide x2 + 3x + 1 by x + 1
Solution:-
In this division of polynomial x? + 3x + 1 is called dividend and the polynomial

x+2 < Quotient
Devisor — x + 1 x4+ 3x+1 <*— Devaidend
- (2% +x)
2x+1
-(2x + 2)
-1 < Remainder
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N(x) = D(x)Q(x) + R(x)
x24+3x+1= (x+Dx+2 )-1
Example: - Divide 4x* —x? 4+ 2x + 1 by x% +2x + 1
Solution:-

4x2 —8x +1 Quotient

S —

Divisor —— x> +2x+1 | 4x*—x*+2x+1 <——Dividend

—(4x* + 8 x3 + 4x?)

—8x3 —5x2+2x+1

—(—8x3 — 16x% — 8x)

11x? +10x + 1
—(11x2 + 22x + 11)

—12x — 10 <«——— Remainder
Therefore N(x) = D(x)Q(x) + R(x)
4x* —x?2 4+ 2x+1=(x?+2x+ 1)(4x?> —8x + 11) + (—12x — 10)

3.1.1.2. Theorems on polynomial function
1. Polynomial division theorem

Recall that when we divided one polynomial by another we apply the long division
Long division; - The division should continue until the remainder is either zero or degree of

remainder less than the degree of the divisor.

Theorem 1.1:- Polynomial division theorem
f(x)andd(x)arepolynomialssuchthatd (x)

# 0, andthedegreeofd(x)islessthanor equal tothedegreeoff(x), thenthereexistuniquepolynon|
f(x) = d(x)q(x) + r(x), wherer(x) = 0 orthedegreeofr(x)isless
thanthedegreeofd(x). Iftheremainderr(x)iszero , f(x)dividesexactlyintod(x).

Examplel:- Divide x3 — 2x2 + x + 5 by x? —x +3
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Solution x—1 <«—— Quotient

Divisor ™2 —x+3 |x3—2x%2+x + 54— Dividend
-(x3 — x% + 3x)
—x%2—-2x+5
—(—x?+x —3)

—3x + 8 «—— Remainder
Check Dividend = (Divisor)(Quotient) + Remainder
x3—-2x2+x+5=x*-x+3)(x—1)+(-3x+8)
Example 2:- In each of the following pairs of polynomials, find polynomials g(x) and r(x) such
thatf (x) = d(x)q(x) + r(x)

a f(x)=x3—-x2+5dx)=x+1
b. f(x)=2x*—x%2+1, d(x)=x*+x

Solution:-

f(x) _ x3-x%45
d(x) T x+1

a. =x+1)x?-2x+2)+(3)

Therefore,q(x) = x?2 = 2x + 2 and r(x) = 3

f(x) _ 2x*—x2+1
dx)  xZ+x

=(x?+x)2x*—x?2+1D)+(—x+1)

There fore g(x) = 2x?> —2x+1landr(x) = —x + 1

2.Theorem 1.2:- Remainder Theorem

Let f(x)be a polynomial of degree greater than or equal to 1 and if the polynomial
function f(x) is divided by x — c .then the remainder R = f(c)

Proof:-
When f(x)is divided by x — c ,the remainder is always a constant . by the polynomial
division theorem, f(x) = (x — ¢)q(x) + k ,where k is constant .

This equation holds for every real number x. hence , it holds whenx = ¢

78




In particular, if you let x = c, observe a very interesting and useful relationship
fle) =(c—oc)qc) +k

=0.q(c)+k

=0+k=k
It follows that the value of the polynomial f(x) at x = c is the same as theremainder k

obtained when you divided f(x)by x — ¢
Example: - Find the remainder whenf (x) = x3 + 5x? — 11x + 7 is divided by x — 2
Solution:-c = 2, £(2) = (2)3 + 5(2)2 — 11(2) + 7
=8+4+20—-22+4+7
=13
Example: - Find the remainder when f(x) = 105x7> — 11x2 + 9 is divided by x + 1
Solution:-c = —1, f(=1) = 105(=1)75 = 11(=1)2 + 9
=-107
Example: - When x3 — 2x2 + 3bx + 10 is divided by x — 3 the remainder is 37 .
find the Value of b.

Solution:- Let f(x) = x3 — 2x2 + 3bx + 10

f(3) = 37(by the remainder theorem)
= (3)2-203)?+3b(3)+10 =137

= 27—-18+9b+ 10 = 37
=9b+19 =37
>b=2
Exercise 3.1

1. Find the remainder in the following pairs of polynomials using polynomial divisions and
the remainder theorem
a f(x)=x3-2x24+8x—-1,q(x)=x—-2
b. fx)=x —1,qx)=x+1
c. f(x)=2x?2+3x+1,q(x)=2x+1
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2. When f(x) =3x” —ax® +5x3 —x+ 11 isdivided by x + 1, the remainderis15.
what is the value of a?
3. When the polynomial f(x) = a x3 + b x? — 2x + 8 is divided by x — 1 and
x + 1 theremaindersare 3and 5 respectively. findthevalueofaandb.

3. Theorem 1.3 Factor Theorem

Let f(x)beapolynomialofdegreegreaterthanorequaltooneandletcbeanyreal
number, then

i. x — cisafactorof f(x),iff(c) = 0,and

ii. f(x)=0,ifx — cisafactorof f(x)

Examplel: - Show that x — 2 isafactorofx3® — 2 x? + 5x — 10
Solution:-c = 2,f(2) = (2)3-2(2)? +5(2) - 10
=8—-8+10-10
=0
since, f(2) = 0, thenx — 2 isafactorofx3 — 2 x?> + 5x — 10
Example2:- Show that x + 3, x — 2andx + 1 arefactorsandx + 2 isnotfactorof
fx)=x*+ x3 —7x*-x+6
Solution:- f(—=3) = (—=3)* + (=3)3 —7(-3)?>-(-3)+6
=8-8+10-10
=0
Hence,x + 3 isafactoroff(x)
f)=@)*+ (2 -7(2)*-(2) +6
=16+8—-28—-2+6
=0
Hence, x — 2 isfactorof f (x)
F=1) = (~1)* + (=1)° = 7(=1)%-(=1) +6
=1-1-7+1+6
=0

Hence,x + 1 isafactoroff(x)
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f(=2)=(=2)*+ (-2)® —=7(-2)*-(-2) +6
=16—-8—-28+2+6
=-12
Hence,x + 2 isnofactorof f(x)
Activity 3.2

1. In each of the following , use the factor theorem to determine whether or not g(x) is a
factor of f(x)
a gx)=x+1,f(x)=x%+4x3+ 12
b. glx)=x+2,f(x) =x3—3x%? —4x— 12
c. glx)=x+1,f(x)=x*®+1
2. Find the value of k if x + 3 isafactorofx® — kx* — 6x3 + x? + 4x + 29

3.1.1.3. Zeros of polynomial functions
A real number c is said to be a zero of function fiff(c) =0

According to the degree of the polynomial equations can be categorized as

I. Linear equations(first degree polynomial equations)
ii. Quadratic equations (second degree polynomial equations)
iii. Higher degree polynomial equations

i First degree polynomial (linear )equations

Linear equation is an equation of degree one which can be reduced to an equation of the
ax + b = 0,wherea # 0,a, beR

For example 2x —3 = 0,1 — 2x = 3, etc.arelinearequations. solving linear equation
means finding the zeros of the given linear equation.

Examplel: - Find the zeros

a. f(x)=2x+1
b. f(x)=3—-Q2x+4)+x+5

Solution :-

a. fx)=0
=>2x+1=0

=2x=-1
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b. f(x)=0
>3-2x+4)+x+5=0

>3-2x—4+x+5=0
>4—-—x=0
>x=4
fAO=3-22@+4+@)+5
=0
Thezerois 4
ii. Quadratic equation

Quadratic equation is an equation of degree two which can be reduced to an equation of the
form ax? + bx + ¢ = 0, forsomefixedrealnumbersa, bandcwitha # 0

Examplel: - Find the zeros of the following function

a f(x)=x*-7x+6
b. f(x)=x?-36
Solution :-

a. f(x)=0
x> —7x+6x>—7x+6=0
>5x2—x—-6x+6=0

=>x(x—1)—-6(x—1)

=>x-6)((x—1)=0
>x=60rx=1

f(6)=(6)*-7(6)+6
=36-424+6=0

fA=@2-7(D)+6
=0
Therefore,1and 6 arethezerosoff.

b. f(x)=0
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=>x2-36=0

=>x =6,0rx =—6
f(6) = (6)* —36
=0
f(=6) = (—6)*-36
=0

Therefore,—6 and 6 arethezerosof f
Note: -A polynomial function cannot have more zeros than its degree.

iii. Higher degree polynomials
There is no simple general way in which a root can be determined exactly when the
degree of polynomial is n > 2. in deed, the location theorem will be applied to find the
approximate value of where the graph of p(x) crosses the x-axis .
A real root ofp(x) = 0 orazerosofp(x)correspondstovaluesofxatwhich

thegraphofy = p(x)crossesortouchestheex — axis.

Rational root test
The rational root test relates the possible rational zeros of apolynomial with integer
coefficients to the leading coefficient and to the constant term of the polynomial.

4. Theoreml.4Rational root test.

If the rational number 5, initslowesttermsisazeroofthepolynomial

f(x)=a,x"+a,_x"1+ — ——+a;x + aywith integer coefficients then p
must be a factor of apand g must be a factor of an.

Examplel: - In each of the following find all the rational zeros of the polynomials.
a f(x)=2x3+9x%2+7x—-6
b. f(x)= %x‘* —2x3 —%xz + 2x

c. h(x)=x3—x+1
Solution:-
a. f(x)=2x3+9x%2+7x—6
an=as= 2 andao= —6
possible value of p are factors of -6 . these are +1,+2,+3 and + 6

possible value of g are factors of 2. These are +1 and + 2
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1 3
possiblerationalzerosgare +1,+2,+3,4+6,+ Eand + Eofthese 12 possible

rational zeros at most3 can be zeros of f
f(=1) =2(-1)*+9(-1)*+7(-1)—-6

=—24+49-7-6
= —6%0

f()=21)*+9(1)?*+7(1)—6

=—2+9+7-6
=12%0

f(=2)=2(-2)3+9(-2)?+7(-2)-6

=—-16+36—14—-6
=—-36+ 36
=0

Similarly;
1 1
F@#0,  fR#0f(-6)#0,  [©6)#0.f(—5)#0.f(3)=0
Using the factor theorem, we can factorize

f(x)as 2x3+9x%2+7x—6 = (x+3)(x+2)(x—%), So

N =

gx)=0atx=-3,x=-2,and x =

Therefore,—3, —Zand% are the only (rational)zeros of f

1 1
b. g(x)zix‘*— 2x3—§x2+2x

Multiply both sides by 2 to make coefficient is an integer
2.9(x= x*— 4x3 — x* + 4x

Let h(x) = 2g(x)

> h(x) = x*— 4x3 — x? + 4x

h(x) = x(x3 —4x? — x + 4) = xk(x)

k(x) = x3 —4x?> —x+ 4

k(x) has leading coefficient of 1 and constant 4
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The possible value of p are factors of 4 .thse are + 1,+2 and + 4

The possible value of q are factors of 1. These are + 1

The possible rational zeros % are + 1,42 and + 4

k(-1) = (-1)°-4(-D* - (-1 +4
=—1-4+1+4=0

k(D) =(1)°-4(1D)? - (1) +4
=1—-4-1+4

k(=2) #0
k(2) =0
k(—4) #0
k(4) =0

So by factor theoremk(x) = (x + 1)(x— 1)(x — 4)
Hence,h(x) = xk(x) = x(x+ D(x—1)(x—4)

h(x) = 2g(x)
h(x) =2x(x+ DE—1(x—4)
Therefore, the zeros of g(x) are 0,+1 and 4
d. an= 1, a=1
The possible rational zeros are +1. Using the remainder theorem ,test these
possible roots (zeros)

f(1) #0
f(-1) =0
So, we can conclude that the given polynomial has no rational zeros.
Activity 3.3

1. Ineach of the following, find all the rational roots of the polynomial.
a f(x)=x3+3x>—-x-3
b. f(x)=x*+3x>—11x%* —3x+ 10
c. gl)=x*—x3—-x>—-x-2
d glx)=2x3+5x*—11x+4
2. Ineach of the following find all real solutions of the equations.
a. 2x3—-5x2+x+2=0
b. x3+x2+2x+2=0
c. x*—x3—-x2—-x-2=0
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Zeros and their multiplicities
If (x —c)™ is afactor of f(x), but (x — ¢)™*! is not a factor of f(x), then c is said
tobe a zero of multiplicity m.
Examplel: - Let f(x) = x"°(x — 1)3(x — m)°?,
Solution:-
The zeros of f(x) are 0,1 and 7 with multiplicity 75,3 and 9 respectively.
Example2: - List zeros with their multiplicity for the polynomial
fO) =2 —4)5(x? —x—2)*(x* = 7)3

Solution:-(x2 — 4)5 = ((x + 2)(x —2))" = (x + 2)% (x — 2)°
2—x-2)2=((x—2(x+1)" = (x—2)%(x + 1)?
o2 =7 = (k= VD) (x +¥7) = (x=V7) (x +V7)’
= flx) = (x* —4)° (x® —x — 2)*(x* - 7)3
= (x+2)5 (= 2)° (x — 22(x + D2 (x = V7) (x +V7)°
=(x=2)7 (x+2)° (+ D2(x =V7) (x +V7)°

zZeros 2 -2 -1 V7 -7

multiplicity 7 5 2 3 3

3.1.1.4. Graphs of polynomial functions
1. Graphs of linear functions

If a and b are fixed real numbers a#0 , then f(x)=ax+b for x€R is called a linear
function .

If a=0, then f(x)=b is called constant function .some time linear functions are written
as y=ax+b

Examplel: - Draw the graph of the linear function. f(x) = 4x — 4

Solution:-a. First you construct a table of values from the domain

X —4 -3 =2 -1 0 1 2 |3 4

f(x)| =20 | —16 | =12 | -8 -4 |0 4 8 12
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b. Now you plot these points on a coordinate system and draw a line through these

points

fx)=4x—4

-4 ( 1'4)

From the graphs given above you should have noticed that

o M w D oE

Graphs of linear functions are straight lines

If a > 0,then the graph of the linear function f(x) = ax + b is increasing,

If a < 0,then the graph of the linear function f(x) = ax + b is decreasing

If a = 0, then the graph of the constant function f(x) = b is horizontal line

if x = 0,then f(0) = b . This means (0, b) lies on the graph of the function and
the graph passes through the ordered pair (0,b). This point is called the the

y — intercept . It is point at which the graph intersecct the y — axis.

If f(x) =0,then0 =ax+b =>x= ;—b.This means (? ,O)Iies on the graph on the

function and the graph passes through the ordered pair (— _?b ,0).

This point is called the x — intercept . it is the point at which the graph
intersects the x — axis .
2.Graphs of quadratic function
Let f(x) = ax? + bx + ¢,a # 0 be a quadratic function
I. The graph of a quadratic function is a parabola
» Ifa> 0,the parabola opens upward

» Ifa< 0,the parabola opens down ward

i Vertex (02, fGD) = (22,2

2a 4a

) is the vertex of the parabola
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— _h2 _h2
> Ifa>0,f (2—:) = 432: is minimum value of f(x) and its range is [4a‘;ab ,oo)

4ac—b2]

> Ifa<o,f (;—:) is the maximum value of f(x) and its range is (—oo '

iii. f(0) = ¢ = (0, c)is the y — intercept
—b+Vb2-4ac

iv. Ifb? — 4ac > 0, then the graph cross the axis atx = -

» It meet the x — axis at exactly one pointx = R

> Attwo distinct points if b2 — 4ac > 0
> It does not touch the x-axis if b — 4ac < 0
Examplel: - Draw the graph of f(x) = 3x%2 + 11x — 4
Solution: —f(x) = 3x? + 11x— 4
I. a> 0,that means a = 3 > 0, the parabola opens upward

. _(-b 4ac-b? -11 4X3(-4)—(11)? -11 -169
i vertex—(—, ) = (——) - (__)
2a 4a 6 4(3) 6 12

iii. f(0) = —4,the graph as y — intercept the point (0, —4)

. —bim —11++/169
iv. X= ——— =X=
2a 6
1 _ 1 )
=x=zorx=—4 this means (§ 0) and(—4,0) are x — intercepts
V. The minimum value of y = —_11269 and range= [__;69 ) °°)

y

A

fx)=3x*+11x -4

(—4,0) /Q 0) X

v

\c\m
[=Y
[l
=
N|o\
O
—/
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Example: - Sketch the graph of g(x) = —2x% — 2x + 4
Solution;

I The parabola opens downward

. -1 9

ii. Vertex (7, )

9

iii. The range (—00, 5)

iv. y — intercept (0,4) and x — intercept (—2,0)and(1,0)

V. The function g has maximum value and it occurs at x =
-1 . . -1 9
> and the maximum value is f(7) =7

y

A

0,4)

A

\4
X

(-240) 1,0)

gx) = —pPx? — 2x + 4

3. The graph of any polynomial function
In general the graph of every polynomial function of the form
p(x) =anx™ +an1x™ 1+, ..., a1x +ao has the following properties

I. The graph of polynomial function of degree n has at most n-1 vertex or turning point.

ii. The domain of a polynomial function is the set of all real numbers and the range is
the sub set real numbers or it could be the whole set

iii. The graph of polynomial function crosses the y-axis once and it crosses x-axis at
most n —times (for polynomial degree n)

iv. The graph of any polynomial is a continuous curve with no hole or no sharp corners.

V. If the degree of the polynomial is odd, then the graph cross the x-axis at once because
one direction of the graph goes downward and the other direction of the graph goes
upward without end.
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Vi. If the degree of polynomial even ,then the graph may or may not cross the x-axis
,because both direction of the graph goes up ward or goes downward above or below
the x-axis depending on the sign of leading coefficient .

Examplel: - Sketch the graph of the following polynomial function.
a fx)=x3—-x>—-x+1 b.f(x)=x*—4x*>+4
Solution:-
a f(x)=x3—-x?—x+1
To find x-intercepts put f(x) =0,
=>x3—x2—x+1=0,factorsof lare+ 1
S f(-D =0,
Hence,x + 1is factorof f(x) =x3—x?2—x+1
= f(1) =0,
Hence ,x — 1is factorof f(x) =x3—x?2—x+1
f)=x-Dx-1Dx+1)=0=>x=1andx =-1
Thus,—1 and 1 arex — intercepts

i, To find y-intercept, putx = 0 = f(0) = 1is y — intercept
ii. Turning point

f(x) = x3—x?—x+ 1has degree 3 and therefore has at most a total 2 relative maxima and
minima the exact location of turning points ,however requires higher mathematics but we show
the shape of the graph by using x- intercept divide x-axis in to intervals.

Thus, f(x) = x> —x% — x + 1 we first factorize

f(x)=(x—1)*(x+ 1), therootsarex = —landx = 1.

Now sketch sign chart

xt1 - 0 + + +
(x —1)2 + + 4+ 0+

(xc+D)(x—1)?2* — 0 + + 0+




Graph of f(x)below x — axts above x — axis above x — axis
Hence, the graph based on the above information will be below

)1;

(@, 1) fx)=x3—x?—-x+1

(-1/0) (1,0)

b. f(x)=x*—4x?+4
i. To find x-intercepts put y = f(x) = 0,

>xt—4x2+4=0
Let u = x? then x* — 4x%> + 4 = 0,
Sul—4u+4=0
>U—-2)2=0=>u=2
Thusx? =u,= x% =2
= x = +V/2, thatare (v2,0) and(—V2, 0)are coordinatepoints ofthe x — intercepts
ii. To find y — intercept, putx = 0,f(0) = 4 is y — intercept (0,4) is the coordinate
point of y — intercepts

iii. Turning point
f(x) = x* — 4x? + 4 has degree 4 and at most a total of 3 relative maxima and
minima . We show the shape of graph by using x-intercepts divide the x-axis into
intervals. Thus f(x) = x* — 4x? + 4 first factorize
= (x+ \/E)Z(x — \/5)2, the roots of f(x) are x = —v2 and x =
V2,
hencef(x)has no roots in any of these intervals (—00, —\/7), (—\/E, \/E), (\/E, 00)

Now sketch sign chart
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-2 V2

(x—v2)° + + )+

(x +V2)° + + +

(x-VD)'(x+v2D)"  + + o0+

Graph of f(x) Above x-axis | Above x-axi§ Above x-axis
Y f(x)=x*—4x2+4
0
Y NZ0) > X

3.1.2. Rational function

Introduction:- In this section we defined a rational expression and determine the domain of a

rational function , will show how to add, how to subtract, how to multiply, and how to divide

one rational function by other

function.

Definition of Rational function

and finally we will show how to simplify a given

rational

Definition 1:- A rational expression is the quotient % of two polynomials N(x) and D(x)

is not zero polynomial.

Here, N(x) is called Numerator and D(x) is called Denominator and D(x)+ 0.
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x34+3x—1

Example 1:-a). is a rational expression

b/c the numerator x3 + 3x — 1 is polynomialof degree 3 and the

denominator x — 1 is a polynomial of degree 1.

—x342x+1.
b) X *2*Lis not a rational expression

Vx+1
b/c the denominator v/x + 1 is not polynomial.
c) 7 is arational expression
b/c 7 is a constant polynomial.
Note that:- i. Every polynomial is a rational expression.

ii. Every rational is not a polynomial expression.

Activity 3.5
» Determine whether the foIIowing expression defined rational expression or not.
x%+1 x%-5x+1 x*+3x-5
a) 2—x b) _-) Z+x 2 )x_2—2x e) 3%

UG _v-3 4 gx2 41y [S2 hEE2 )

xy+1

Definition 2:-
A rational function of x is a function R which is defined by R(x) = ( ) WhereN(x) and D(x)

are polynomials and D(x) is not zero polynomial (D(x) # 0) is called a Rational Function.

Example L.a.f(x) = x—izb. r(x) =x—2

x3+2x? +2

——— allare rational functions.
1)( +1)

c. h(x) = a. glx) =

N. B: - Any polynomial function P(x) is a rational function B/c we can written p(x) = @,

wherep(x) = 1 is a polynomial function.

Activity 3.6
» Determine which of the following are rational functions?
a) glx) = 2x3+x2 2b) f(x)=x?243x+5 c¢). k(x) =v9 —x?

Domain and Range of Rational Function
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Definition 3:- The domain of the rational function F(x) = % consists of all real numbers
except for all zeros of D(x). i.e D(x) # 0.
The domain of F can be denoted by Dy = {x:x € R and D(x) # 0}.

. _ x+2
Example 1:-Let (x) = DD then

Domain of R(x) = {x: (x + 1)(x — 1) # 0}
={x:(x+1)#0and (x —1) # 0}
={x:x # —1land x # 1}
i.e. Domain of R(x) is the set of all real number except -1 and 1.

It denoted by Domain of R(x) = R/{—1,1}

x—1

Example 2:- Letf (x) = el then the domain of f(x) = {x:x? + 3 # 0}.But, x? + 3 can not

be zero in the set of real numbers, hence, the domain of f(x) is the set of all real numbers and it
denoted by Domain of R(x) = {x:x € R}

x
2x2-7x+3"'

Example 3:-let (x) = then

Domain of g(x) = {x:2x? — 7x + 3 # 0}
={x: 2x—1)(x—3) # 0}
={x:(2x—1) # 0 and (x — 3) # 0}

= {x:2x # 1 and x # 3}
1
= {x:x #-and x # 3}
2
i.e Domain of g(x)is the set of all real numbers except %and 3.

It denoted by Domain of g(x) = R/ {% 3}

Activity 3.7
» Find the domain of each of the following rational functions.
_ox—1 _ x243x—2-1 1
8) flx) =22 b) g(x) = 2= ¢) h(x) = ——
_ 2
d)I(0) = ey m(x) = x~2 Anx) = 5
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v' Self test exercise 3.1
1. Which of the following is rational expiration?

1 —x*+3x-5 —a? -2
a. 24+-x% b Z2¢ 2 d. (2= e. logi164
2 x+2 Z

2x 3a-1

£ x x%4+2x+1, 15v3. 1-x2
“am 9 x2-x-2 104 VxZ+1

2. Determine the domain of each rational function
a k()=5+2 bh(x) =—=2 _ ¢ f(x)=

(x+2)(x-3)

x3-27

d](x)——ep(x)—1+x+xf. I(x )_m

2a’+9x+1
9. wl) ==~

3.1.3 Basic operations of rational function

Addition, Subtraction, Multiplication and Division of rational expiration follow the same basic

rules as addition, subtraction, multiplication and division of rational numbers. Those we find the

definition of the above four fundamental operations on the rational functions analogous to those

for rational numbers.

A. Addition and Subtraction of rational function

If £ and < are two rational numbers, then % + % = adbi;bc whereb&d # 0.

Similarly, pr(x) and rEx; are two rational functions, then™= ((’:())irg;
,where q(x)ands(x) + 0

Example 1.Find the sum off—and =
X+2 xX—1

Solution:- — + —1

Domain= {x:x + 2andx — 1 # 0}
={x:x+2 # 0andx— 1 # 0}
= {x:x # 2andx # 1}
= {x:x # —2&1}
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x—1 X (x-1)(x—-1)+x(x+2)  x?—Xx-x+1+x%+2x  2x2-2x+1+2x 2x%+1
NOW’X+2 + -1 - - -

(x+2)(x—1) - X2 —x+2x-2 T x2+x-2 T x24+x-2
2 _
Example2. Find the difference of =% and <= |
x—1 2x+1
2 _
Solution;- X** _ X3
x—1 2x+1
Domain= {x:x — 1 and 2x+ 1 # 0}
={x:x—1+#0and 2x+ 1 # 0}
={x:x # 1 and 2x # 1}
= {X:X # land x # 1}
2
R {1 1
= / >
Now X*+x  x=3 _ (P+0)@x+1)-(x-3)(x-1) _ 2x3+x2+2x% +x—(x2—x—3x+3)
"x—1  2x+1 (x-1)(2x+1) - 2x2 +x-2x—1

2+ 3%+ x— (x* —4x+3) 2x*+3x* +x—x*+4x—3) 2x°+2x* +5x—3
B 2x?2 —x—1 B 2x2 —x—1 B 2x2 —x—1

Activity 3.8
Let p(x) = ﬁ and q(x) = E be two rational function, then

Find p(x) + q(x)andp(x) — q(x)
B. Multiplication of Rational Function

Multiplication of rational functions also follows the same pattern as multiplication of rational
Numbers.

If% and% are two rational numbers, then their product is defined as %x <

= %X where b&d # 0.
d  bd

Similarly, multiplication of two rational functions,—== and —= are defined as:

p(x) rx)
q(x) d s(x)

PO r(® _ por(®
a® " s®  qsix’

whereq(x) ands(x) # 0.

Example 1.Find the product of-—* and **2
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Solution:-Domain= R/{—3,0}

x%-1 x4+2  (x?-1)(x+2) x3+2x%2-x-2
Now, 22 x 22 = = X2
x x+3 x(x+3) x“+3x

Exaple2.Find the product of% gnd X2
x+1 xX+3

Solution:-Domain= R/{—1, -3}

Sxt4 X2 _ (3x+4)(x-2) _ 3x%—6x+4x—-8 _ 3x%—2x-8
x+1 x+3 (x+1)(x+3) x24+3x+x+3 x2+4x+3

Now,

C. Division of Rational Function
We know that the division of the rational number% and gdoes the follows:

a ¢ a d adh b c&d % 0
b 7 bxc—bcwere,c # 0.

Division of rational function is also defined in the same way of division of rational numbers.

The quotient of two rational function is the product of the first function and the reciprocal of the
second function.

) r(x) r(x)
d—= for
a0 TS S0

p(x) 7)) _ p&x) ) _p)sx)
1@ 5@ 9 T q@re)

x%42 x+2
A/

For two rational function,2 #0

Examplel: Divide

X X

xZ=3x—4 x%-16
/ b
x2-1 x+3

x%+2 x+2

Solution:-A——=by —
Domain= R/{0, -2}

xX°+2 x+2 x*+2 X x%+2
= = X =
X X X x+ 2 x+ 2

B/x2—3x—4 by x%2-16

x2-1 x+3

Domain= R/{—4,—-3,—1&1}
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x?=3x—4 x*-16 (x+1Dx-4) (x-4x+4)
x2—1  x+3 (x=-D&x+1) x+3
C(x+ D —4) x+3
T -DO+1D) (x—4H(x+4)

_ x+ 3 _ x+ 3
T x244x—x—4 x24+3x—4

Exercise 3.2

Perform the following operations and indicate the domain of the resulting expressions.

x2+1 x x+1 ( x2-1 ) (x2+x—12)i x-2 3x
Tx—-1  x-1 x-1 \x2%+3x-4 x2+4x+37 " x+3  x2+5x+6
X+5 | x=5 ¢ x?-25 _ x2-16
p, XSy asgatoas | xoie
2 2 (x=5) (x+4)
x%-3x—4 _ x?-16_ x%+1 1 x+1
x2-1 x43 " x-1  x-1 x-1
x x%+43x 1 x xy+y?

+

"x%241 0 x*-1 x-1 4-x  x2-y2

3.1.4. Simplification of rational Expression

Definition :- Arational Expression is said to be simplified , when it is replaced by an
equivalent rational expression which is in lowest terms,

i.e The numerator and the Denominator have only 1 as a greatest common factor.

2_6x+8
2_5x+6

Example 1:- Simplifyz

Solution:-First write the denominators of the given polynomial as a product of simple
polynomial factors.

xZ—6x+8 _ (x—2)(x—4)

x2-5x+6  (x—2)(x—3) '
2 in numerator and denominator, we get the given rational expression in its simplified
(x—4)

i.ex? — 6x + 8 andx? — 5x + 6 can be written as

canceling x —

form as ,X #2,3
(x-3)
x+1_x=1
Example 2:- Simplify =12+l
x2-1

Solution: - The L.C.D of numerator is(x — 1) (x + 1)
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(-1 (x+1)—(x—1) (x—1) x?+20x+1—(x% —2x+1) x?+2x+1-x2+2x-1)

x+1 x—-1 — 2 2
ThlS glveS (=D (x+1) — xc—1 — x4—1
1 X+l 2 2 2
x4-1 x2-1 x“-1
4x

= —=4,x%-1,0&1
X

Exercise 3.3

Simplify the following rational Expression

1 1 a —ab 1 2
P e ) — x“+3x-10
a) 1 + 1 b) atb a C) 5x—10
x+1 x-1 b—a a+b x%-25
xX+5
12

x—1 x+1 xX—6
d x X—2 x+3 A 1
) —Lclx—z x+2 x2 4f) +

3.1.5. Solving Rational Equations and Inequalities

A. Solving Rational Equation

Definition :-Rational equation is an equation which can be reducible in the
form of p( ) = 0, wherep(x)andq(x) are polynomial withq(x) # 0.

To solve any ratlonal equation we have follow the following steps:

Step 1:Determine the universe (Domain) of the given rational Equation.

p(x)

Step 2:Simplify the equation to an equivalent equation of the form = = 0, for some

polynomials p(x)andq(x).

Step 3: Solve the polynomial equation p(x) = 0.

Step 4:Find the intersection of the solution obtained in step3 with the universe of the
equations.

Step5: The result obtained in step 4 is the solution set of the given rational equation.

Example 1: State the universe (Domain) and solve the following equations.

X 1
Q) =

Solution: - The Domain = {x:x — 1 # 0}
={x:x # 1}

. Domain = R/{1}
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-1 x—1
X 1
> 5-(5)=0
X 1
= — =
x—1 x-—1
x—1 0
= =
x—1
5x—1=0
>x=1

But1l ¢ R/{1}

Hence the solution set is@.

b) Sx L3

x+1 X x+1
Solution:- The Domain = {x:x+1 # 0,x # 0&}

={x:x # —1, &x # 0}
~ Domain = R/{—1,0}

—-3x 6 3
Now,— +—-=—
x+1 X x+1

—3x(x)+6(x+1) 3
x(x+1) Cx+1

—3x*+6x+6 3
x(x—1)  x+1

—3x2+6x+6 3
x(x—1) x+1

—3x?+6x+6—3(x)
x(x—1) B

=

—3x2+6x+6—3x_
x(x—1) B

—3x24+3x+6 B
x(x—1)
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= —3x2 4+ 3x + 6 = 0 bothsidedivide — 3,thenweget
>x2—x—-2=0
>x-2)(x+1)=0
=2x—2=0andx+1=0
= x = 2andx = -1
But the solutions are 1 and 2
Hence the solution set = Domain N solution = R/{—1,0} N {1,2} . s.s = {2}

B. Solving rational Inequality

Z(x) p(x) p(x) >

Definition:-An inequality that i ivalen ither 22 < pix) PO EIC0)
efinitio equality that is equivalent to eithe (x)_O orq(x)<00rq(x)_00rq(x)

0 Or% +0 for some polynomialsp (x)andq(x)andq(x) #

0 overrealnumbers is called Rational Inequality

N.B to solve rational inequality either case method or sign chart method.
I. Case Method
1. If the product of two quantities p,q > 0, then
Casel .p>0andgq >0
Casell.p <0andg <0
1. If the product of two quantitiesp, g < 0 ,then
Casel. p>0andgq <0

Case ll.p <0andq =0

2. If the quotient of two quantitiess > 0,then

Casel. p>=0andq =0
Casell.p <0andq <0
4. If the quotient of two quantitiess < 0,then

Casel. p=0andqg <0

Casell.Lp <0andq =0
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Examplel:- Solve the following rational inequality by using case method.

a) xng >0
Solution: to solve the rational inequalities
Let us consider two cases
Domain= R/{1}

Casel:x >0andx —3 > O,sinceﬁ >0

=>x>0andx >3

= (0,0) N (3,0) = (3,©)

Thus,s.s; = R/{3} N {3,0} = {3, x}
={x:x > 3}
Case2:x <0andx—3<0
=>x<0andx <3

= (=%,0) N (—0,1) = (=x,0)
Thus s.s, = R/{3} N (—0,0) = (—x,0) = (—x,0)
There fore,s.s = s.s; Us.sy = (—,0) U (3,0)or
s.s={x:x <0orx > 3}
b —<0
Solution:-To solve the rational inequalities
Let us consider two cases
Domain= R/{2}
Caselix > 0andx+2<0
=>x = 0andx < -2
= [0,00) N (=00, —2]
=2s55=0
Thuss.s; =R/{2}nd =0

Case2:x<0andx+2=0
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=>x<0andx = -2

Thus s.s, = % n=[-2,0] = [-2,0]

Therefore, s.s =s.s;Us.s, =0 U[-2,0] =[-2,0]
Activity 3.9
Q1: state the universe and solve the following rational inequality.

x+1

2_
A)IZ>0 b)<0 1<_-<3 ) S e

x2+45x+6

[1. Sign Chart Method

Inequities can also be solved by a more efficient (best) method known as sign chart method.
When we solve rational inequalities using sign chart, we should consider the following steps:-
Stepl: simplify the inequalities such that the right side of the inequality is zero.

Step 2: Factorize both the numerator and the denominator and state the universe.

Step3: Find the zeros of the numerator and the denominator.

Step4: write the zeros in ascending order on a horizontal line to determine the interval.

Step 5: Find the algebraic sign of each factor between the intervals.

Step6: Find the algebraic sign of the ratio or the product of factor between the intervals.

Step7: Find the solution set of the inequality according to the question at hand and
algebraic sign obtained in step 6 by considering the domain.

Example 1: solve the following rational inequality.

(x=3)(x+3) x*-16
) (x+1)(x=2) 0 )—x2+x+6 -

(x—-3)(x+3)

Solution: a) the domain of the inequality tD(x—2)

> 0 isareal number except—1 and 2.

The zeros of the numerator are t—3 and 3 and the zeros of the denominator are —1 and 2.

Now, we can construct a sign chart as
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X — 3- - -- . - - + +
x+ 3- - + ++ + + ++
(x=3)x+3) + -- - - -

x+1 -- - - + + + + + +
X —2-- - - - - + + + +
x+D(x—2) + + [# + - - ++ ++
(x—3)(x+3) + + + + + +
x+1D)(x—2)

(x=3)(x+3)

The expression iDG2)

is positive on the interval (—o,—3) U (—1,2) U (3, ).
Therefore, the solution set of the inequality is

58,5 =(—0,—-3)U(—-1,2) U (3,0)

B) The numerator x? — 16 is factorized in to
(x2—=4)(x?+4) = (x—2)(x + 2)(x? + 4)and the denominator -x%+x+6 is
factorized into (x + 2)(3 — x).

The domain of inequality R/{—2,3}

4 _ _ 2
Thus. > 16 =(x 2)(x+2)(x2+4)

) > 0The zeros of the numerator are—2 and 2 andzero's
—X%+x+6 (x+2)(3—x)

denomnatorare — 2 and3

Now, we can construct a sign chart as shown below;

-2 2 3

x2 + 4 + +
x—2 + +

x4+ 2 + +

2+ 4)(x—2)(x +2)++ ++
x4+ 2 -- + +
(x=3) o
(x+2)(x—=3) - -
(x2+4)(x—2)(x+2) .-

(x+2)(x—3)
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(x-2)(x+2)(x2+4)
(x+2)(3—x)

The expression Is greater than or equal to zero on the interval [2,3).

Therefore, the solution set of the inequality is
~s.s=1[23]ors.s ={x:2 < x <3}
Exercise3.10
QL. Solve the following inequalities by using sign chart.

1 2 2 X 1-x

) — ot > 1 p— < o)1+

x2-9  x2+8x x—4 x2-1 x2-x-2 7 x2-3x+2

3.1.6. Sketch the graphs of a given rational function

To draw the graph of rational functions, we should give great emphasis for the following terms.
There are intercept, symmetry and an asymptote.

I. Intercept
There are two kind of intercept s namely, x- intercept and y-intercept.

The x- intercept is the point at which the graph crosses the x-axis and y- intercept is the
coordinate the point at which the graph crosses the y-axis,

11 Asymptote

Definition:- An asymptote is the line to which the graph of the function approaches for extreme
values of the domain.
Asymptote is not the part of the graph.

There are three kind of the asymptote such as

)] Vertical asymptote
i) Horizontal asymptote and
iii) Oblique asymptote

I).Vertical asymptote

Definitionl:- For any rational function R(x) = %, q(x) # 0.
If g(a) = 0 and (x — a) is not a factor of p(x) then the vertical line x = a is

called the vertical asymptote(s).

Note: i) Ifg(a) # 0 for all a in the domain ofR(x), then the graph does not have a vertical

asymptote.
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if) The graph of a rational function can have more than one vertical asymptote.

Examplel: Find the vertical asymptote of the following rational functions.(without sketching
the graph).

—h). gl) == 0).h (x) = 2=

a).f(x) = x2— x3-2x x2+1
Solution: - a) The denominator of f(x) isx? — 4. Then
>x2-4=0
>x—-2)x+2)=0
>x—2=0o0orx+2=0
>x=20r x=-2
Hence, the domain of f(x) is R/{—2,2}.
Therefore, x = 2 and x = —2 are vertical asymptotes of f(x).
b). The denominator of g(x) isx3 — 2x. Then
>x3-2x=0
>x(x>-2)=0
>x=00rx?—2=0
= x = 0 or x = +/2. But x = 0 is a factor of the numerator and the denominator
Hence, the domain of £ (x) is ®/{0, +v2,}.
Therefore, x = V2 and x = —/2 are the only vertical asymptotes of g(x).
C). The denominator of h(x) isx? + 1 .Then
>x2+1=0
= x2 = —1, but the square of any real number X is non negative .
Hence, the domain of h(x) is the set of all real numbers.

Therefore;thegraphofh(x)has novertical asymptote.
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N.B. 1. If D(x) # 0 forallx € R inthe domain of F(x), thenthe graph does not have a
vertical asymptote.
2. The graph of f(x) never intersects its vertical asymptote.

Il. Horizontal Asymptote

Definition:- For any rational function R(x) = %,q(x) * 0.

A. If the degree of numerator , p(x) is less than the degree of the denominator g(x), then
the horizontal liney = 0(x-axis) is called horizontal asymptote of the graph of R (x).
B. If the degree of numerator , p(x) is equal to the degree of the denominator q(x), then

the horizontal liney = %iscalledahorizontalasymtoteofthegraphofR(x);
Where a is leading coefficient ofp(x)and b is leading coefficient ofq(x) .

Examplel: Find the Horizontal asymptote of the following rational functions. (without
sketching the graph).

x2+1 2x%+1
A fx) =51 B) gx) =25
Solution : A) the degree of numerator x2 + 1, is 2 and the degree of denominator

x3 —xis 3
This shows that the degree of Numerator is greater than the degree of denominator,
Therefore, the horizontal line y = 0 is the horizontal asymptote.
B) The degree of numerator 2x? + 1, is 2 and the degree of denominator

4x% — 4 s 2.

This shows that the degree of Numerator is equal to the degree of denominator,
The horizontal asymptote obtained by dividing the leading coefficient of numerator by the
leading coefficient of denominator

Therefore, the horizontal asymptote isy = % :

I1l. Oblique Asymptotes

Definition: for any rational functionR(x) = %, q(x) # 0.

If the degree of numerator, p(x) is one higher than the degree of the
denominator q(x), then the long division we obtain R(x) = ax + b + %,
where a # 0 anda, b, € R

and the degree of r(x) is less than the degree of g(x) and the oblique line

y(xX)=ax+b is called oblique asymptote of the graph of R(x).
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Note that:-i. A straight line is said to be oblique if it is neither vertical nor horizontal line.
ii. The graph of f(x) may cross its horizontal or oblique asymptote.

Examplel: Find the oblique asymptote of the following rational functions.(without sketching
the

2 1

x2-
x+1

graph). A) . f (x) =

2x%2-1
x+1

Solution:f(x) =
division.

can be written as f(x) =

2x%-1
+

- =Qx—-2)+ ﬁ by using long

X

Thus the line y = 2x — 2 is oblique asymptote of the graph of f(x).
To sketching the graph of rational functions we can follow the following procedure.
i. Factorize the numerator p(x) and the denominator q(x)

And reduce the fraction ZE—S by canceling all common factors.

ii. Find the intercepts of the graph ofR(x), if their exist.

iii. Find the asymptote of the graph ofR(x), if their exist.

iv. use the x-intercepts and vertical asymptotes to divide the x-axis interval,
Determine the algebraic sign of R(x) on each of this interval; this show where

the graph of R(x)lies above or below the x-axis

V. Determine the symmetry of the graph of the function.
Vi. Sketch the graph of R(x) by using the information obtained in the above all
steps.

Example: Sketch the graph of each of the following rational function.
x*-1 22
2 -2

a/ R =5~ b/RK) = c. R(x) ==

x2— x2—4 X
Solution: a). Domain of R(x) = R/{—2,2}

i. Factorize the numerator and the denominator gives:

R( ) _ X _ X
Ve 4T x—2)(x+2)
ii. Find intercepts (i. e x and y intercept).

% To find x- intercept put y = R(x) = 0.then R(x) =0
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X

(x-2)(x+2) = =x=0

Hence, the graph intercepts then x — axis at a point (0,0).

% To find y- intercept put x = 0.then f(0) =0
=ence, the graph intercepts then y — axis at a point (0,0).
iii. Find the asymptotes.
% The denominator of f(x) is zero at the point x = —2 orx = 2.
Hence, x = —2andx = 2arethevertical asymptotes of the graph of R(x)
¢ The degree of the numerator is less than the degree of denominator.
Hence, y = 0 is Horizontal asymptote of the graph of R(x).
iv. To show where the graph of R(x)lies above or below the x-axis. Determine the
algebraic sign of R(x) on each of this interval we use sign chart as follows.

-2 0 2
X — 2- - +
X+ 2- - -
X - .
(x=2)(x—2)++ - -
X +
(x—2)(x+2)

For x € (—2,0] U (2,),R(x) > 0.

That means the graph of R(x) lies above thex — axis on this interval.
» Forx € (—o—2)UJ0,2),R(x)<0.
That means the graph of R(x) lies below thex — axis on this interval.
> Since R(x) is an odd function,
i.e R(—x) = —R(x), the graph of R(x) is symmetric about the origin.

v. sketching the graph.

v
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b).Domain of R(x) = R/{—2,2}

I. Factorize the numerator and the denominator gives:
x2—-1 —-1Dx+1)
R(X) == =
x2—4 (x-2)(x+2)
ii. Find intercepts (i. e x and y intercept).
% To find x- intercept put y = R(x) = 0.then R(x) =0
x-D(x+1) _
(x=2)(x+2) -

=>x2-1=0
>x =1

Hence , the graph intercepts then x — axis at a point (-1,0) and (1,0).

% To find y- intercept put x = 0.then R(0) = i
Hence , the graph intercepts then y — axis at a point (O,i).
iii. Find the asymptotes.
% The denominator of f(x) is zero at the point x = —2 orx = 2.
Hence, x = —2 orx = 2 are the vertical asymptotes of the graph of R(x)

% The degree of the numerator is equal to the degree of denominator.
Hence, dividing the leading coefficient of the numerator by the leading

2_4_ '
Thus, R(x) = 1 is aHorizontal asymptote of the graph of R(x).
iv. To show where the graph of R(x)lies above or below the x-axis.determine the algebraic

sign of R(x) on each of this interval we use sign chart as follows.

1 2

] ||+ +

x—2- - - - - -

x+ 2- - + + + +
(x—2)(x+2)++ - - - -
x—1 - - ++
x+1 + + + +

(x — 1)(x+1) : e
(x—2)(x+2) + + -
(x—1)(x+1)
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» For x € (—oo,—2) U [—1,1] U (2,0)R(x) > 0.
That means the graph of R(x) lies above thex — axis on this interval.
> Forx e (—2,—-1]U[1,2),R(x) < 0.
That means the graph of R(x) lies below thex — axis on this interval.
> Since R(x) isaneven function,
i.e R(x) = R(—x), the graph of R(x) is symmetric about the y- axis.
V. sketch the graph

A A A

Y

A
v
1

A

v

1
4

Fig. Graph of f(x) =

C) Domain of R(x) = R/{2}

I. Factorize the numerator and the denominator gives:
x2—2 (x=V2)x++2)
XxX—2 x—2)
ii. Find intercepts (i. e x and y intercept).
% To find x- intercept put y = R(x) = 0.then R(x) =0
_GvDEE) _

:>(x—_\/§)(x+\/§)=0
=>x—v2=0and x++/2 =0

= x = —/2and x =2

R(x) =

Hence, the graph intercepts then x — axis at a point (—v2,0)and (v'2,0) .
% To find y- intercept put x = 0.then R(0) =1
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Hence, the graph intercepts then y — axis at a point (0,1).
iii. Find the asymptotes.
% The denominator of f(x) is zero at the point x = 2.
Hence, x = 2 is the vertical asymptote of the graph of R(x).
% The degree of the numerator is one higher than the degree of denominator,

by long division R(x) = x + 2 + XZTz :
Hence, it has no Horizontal asymptotes of the graph of R(x) but an oblique
asymptote y = x+ 2.
iv. To show where the graph of R(x)lies above or below the x-axis.determine the
algebraic sign of R(x) on each of this interval we use sign chart as follows.

2

x —/2- - ++ ++

x+vV2 + + + +

(x—\/_)(x+\/_)+ ++ ++

x—2 - - ++

(x V2)(x+/2) i - - + +
X—2

For x € [—V2,v2] U (2,0)R(x) > 0.

That means the graph of R(x) lies above thex — axis on this interval.

> Forx € (—0,v2] U [V2,2),R(x) < 0.
That means the graph of R(x) lies below thex — axis on this interval.
» Since R(x) isan even function,R(x) = R(—x), the graph of R(x) is
Symmetric about the y- axis.

A v
AL -
) 2 7 X
e
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Exercise3.11

1. Sketch the graph of the following.

8) fOx) = T2 ) fo) =TI ) f(y) = M
D.F0) = 2 0). f(x) = 5240, fx) = £
). f(x) = 124

3.2 Exponential Function

Introduction

The mathematics of logarithms and exponentials occurs naturally in many branches of science.

It is very important in solving problems related to growth and decay. The growth and decay may
be that of a plant or a population, a crystalline structure or money in the bank. Therefore we need
to have some understanding of the way in which logarithms and exponentials work.

This unit defines and investigates exponential and logarithmic functions. We motivate
exponential functions by their wide variety of application. We introduce logarithmic functions as
the inverse functions of exponential functions and exploit our previous knowledge of inverse
functions to investigate these functions. In particular, we use this inverse relationship for the
purpose of solving exponential and logarithmic equations

Revision on Positive Integral Exponent

For a natural number n and a positive integer a; then the expression "a™" read as “the n'" power
of a” or “a raised to n” and defined as:

a™ = a.a.a.....a (The product of n equal factors; each factor equal to a)

In the symbol a™, a is called the base and n is called the exponent

Example; 3% = 3.3.3.3.3 = 243

(V2)* =V2.N2.V2.V2 =V2.222 =V16 =4

2, 222 222 8
(3) 3'3'3 333 27

w| N
N

3.2.1 Revision on Rules of Exponents
Let a and b are any real numbers, m and n are positive integers;

1. Product Rule with the Same Base but Different Exponent
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To multiply powers with the same base, keep the base and add the exponents
amxan — am+n

Proof:—a™xa™ = a.a.a....ax a.a.d....a = d.a.d....a = amtm"
m factors n factors m+n factors

2. Product Rule with the Same Exponent but Different Base
Suppose now the bases are different but the exponents are the same; using the
commutative and associative properties of multiplication in the system of real numbers.
(ab)™ = a™xb™

Proof:- (ab)" =abxabxabx..xab=axaxax..xax bxbxbx..xb=a"xb"
n factors n factors m factors

3. power Rule
To simplify power of power, keep the base and multiply the exponents

(an)m = g™
m factors
Proof;_(an)m = a"xa*xax ... xa" = an+n+n+...+n: a™m
m factors

4. The Quotient Rule with the same base but different exponent.
To divide powers with the same base, keep the base and subtract the exponents

a n-m
a—m =a , a#0
Proof:- Ifn > mand a # 0, then
a®  a" Mxa™
_— = an_m
am am
aTL
— —_ Y — qn—m _ 40
Ifm—n,thenl—an—a =a
a® =1, foranya # 0
a” n-m -k 1
If n <m, a—m—a =a —am_n—ﬁ,fork—m—n>0
i. e For any nonzero real number ‘a’ and natural number ‘n’,
1 1
a"'=— © a" =——and a " is the multiplicative inverse of a™
amn a™"

5. The Quotient Rule with the Same Exponent but Different Base
To divide powers with the same exponent but different base, keep the exponent and

divide the base.
SO b0 @ =2 ad =" a#0b%0
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n factors

.a% _ axaxax.xa _ a a n
Proof: i err—— bxbxbx X = ( )N, b #=0or

n factors n factors

n

n — n — n — 1 a b 0
G =@ =an@r=at = b

Note:- The above five rules are called the rules of exponents for positive integral exponents
The rules of exponents help us in simplifying expressions that involve powers.

Examplel: simplify the following

x8

a. (x4-y—5)2 — (x4)2(y‘5)2 — x4x2y—5x2 — x8y—10 — ST

9C—5d5 9C—5—(—7)d5—(—4) _ C2d9

18c~7d-% 942 T 2

_ _ _ 3 x— 3x— —ex=t
(—27y32_6)T1_(—33y32_6)%—(33y3z—6)31 (33)3(y3)3(z—6)31 (3 3><y 3)(2 3)

x~3 x~3 (x‘3)_71 <3 3 x%
371yl 4 22 72
= 5 = 5
X3 3yxs
Activity3.10
Simplify the following expressions
Xy 3,- xnx3n+5
x—3y—222) 2 b x4-n

Zero and Negative Integral Exponents
Let us discuss about the meaning of power of non-zero base, with
i.  Zero Exponent
For all positive integer ‘n’ and any real number ‘a’
a®. g™ = qo*th = gt
a. a® = g"t0 = gn
but we know that 1 is the unique multiplicative identity
i.e l.a"=a"=a"1
Accordingly we get the following definition

If ae Rand a # 0 then

ii.  Negative Integral Exponent
If ‘n’ is a positive integer, then ‘—n’ is a negative integer. Product rule with the same Base

but different exponent;
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at.a " =g =% =1

This implies a™™ is the multiplicative inverse of a™. But — is also a multiplicative

an
. . - - . . 1
inverse of a™, then by uniqueness of multiplicative inverse a™" must be equal to e

i.elf a € R, a # 0and nis a positive integer, then
=

Note; If a = 0 and n is positive integer, then
= 07" = — == which is undefined

OTL

» 0= +CD = 101 = o.oil = g Still this is undefined.

Definition:- If a and b are real numbers and n is a positive integer greater than 1

such that a™ = b then a is called the n" root of b

Examplel:- 2 is the sixth root of 64 b/c 2°=64.
-2 is also the sixth root of 64 b/c (-2)° = 64.
-3 is the fifth root of -243 b/c (-3)° = -243.

Definition:- If a is real number and n is a positive integer greater than 1, then the principal n™

rootof a is denoted by %/a and defined as
o The positive n'" root of a if a>0 and n is even
o The negative n'" root of a, if a<0 and n is odd.
o 0,ifa=0

Examplel
v 6 is the principal fourth root of 1296, -6 is the fourth root of 1296 but not the principal
fourth root of 1296.
v -3 is the principal seventh root of -2187.
Rational Exponents

If nand m are integers, we now that(a™)™ = a™". This rule is still holds when n = %

1 1
ie(@an)™=a™m=al=a
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Definition: 1. If a € R and nwithn # 1is a postive integer, then

1
(a)n =Va,  when Vais areal number

21f a € R, nand m are postive integers, then
m 1 n
(@7 = (@)™ = (Va)" = Vo~

Provided “/a is a real number

Note: the exponential rules we discussed for integral exponents also hold for rational exponents
and also hold for real exponents.

Rules of Radical

If a and b are real numbers and n and m are positive integer greater than 1, then

+ 3/a.Vb = Vab, if nis even then a and b are non-negative real numbers

£ Ja_n

g = %, b # o,if n is even then a and b are non-negative real numbers.

& \//a = "/a,if nm is even then a is non-negative real number.
Example; simplify;
a. V81.19=23/(81)(9) =V729=9

4512 _ 42048
b. = = 3/256

c. /19,683 = **3/19,683 = 3/3/19,683 = Y27 =3
Activity3.11

1. Simplify the following expressions

—3,,2,—4
a (x y6)3 b 15x"°y“z

x4y " 20x~4y~322

2. Simplify each of the following
V40
\/% b./3xy.{/12xy3 for x,y =0

3.2.2. Definition of Exponential Function
Functions given by the expressions of the form

y=fx) =a%
Where ‘a’ is a fixed positive number anda # 1, is called exponential function. The number ‘a’

is called the base of the exponential function.
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Every exponential function of this form has all real numbers as its domain and all positive
realnumbers as its range. Exponential functions can be evaluated for integer values of x by
inspection orby arithmetic calculation, but for most values of x, they are best evaluated with a
scientific calculator.

The following are some examples of exponential functions

flx) =2%gx) = (g)x,h(x) = 10%, etc
The following are properties of an exponential function and are useful in drawing their graphs.

+ Ifa=1,then f(x) = a* = 1* = 1 for all real number x, and hence the graph of y = 1*
isthe liney=1

+ Sincea® =1, for a > 0, it follows that the graph of any exponential function passes
through the point (0, 1).

#+ If a > 1then a* > 1 for all x > 0 and in facta® keeps increasing without bound as x
increases. on the other hand for x < 0, we get 0 < a* < 1 and the graph approaches to
the negative x-axis.

+ If0<a<1,then0<a*<1forallx>0,and for x < 0 we have a* > 1 in fact a*
keeps increasing without bound as x goes to negative infinity and the graph approaches
to the positive x-axis

+ The graph of g(x) = (5)*is the reflection of the graph of y = a*along the y-axis.

Naturally, a larger value of ‘a’ will cause the graph y = a* to rise more rapidly.

3.2.2.1 The graph of Exponential Function

Steps in graphing Exponential Function

1. Establish a table of values by considering the function in the form of y = a*
2. Plot points from the table of values on the coordinate axis
3. Connect points with a smooth curve to form the graph.
Examplel; draw the graph of
flx) = 2%
First choose convenient value for x, let x = —3,—2,—1,0,1,2 and 3
f(0)=20=1,f1)=21=2f(2) =22=4f(3) =23 =8
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D=2 == () =2 = = (B =2 ==

21 2 22 4 23
Next form a table from these values.
X -3 -2 -1 0 1 2 3
f(x) 1 1 1 1 2 4 8
8 4 2

Then, plot the corresponding points on a coordinate plane and connect them with a smooth curve

for the desired graph

Let’s examine some characteristics of the graph of the exponential function
flx) =2%

e A vertical line will cross the graph exactly at one point. The same is true for a horizontal
line. The vertical line test shows that this is indeed the graph of a function. Also note that
the horizontal line test shows that the function is one-to-one.

e There is no value for x such that

2* =0
So the graph never touches the x-axis but it approaches the x-axis on the left and cross the y-axis
aty = 1i.e (0,1) is y-intercept. Tothe right the function value gets larger. We say that the values
grow with out bound. Then we call y = 0(negative x — axis) thehorizontalasymptote.
Example2; draw the graph of
fG) = Q"

First choose convenient value for x, let x = —3,—2,—-1,0,1,2 and 3

1 1 1 1 1 1 1
f(0) = (E)O =1f(1) = (5)1 = Ef(z) = (5)2 = Zf(B) = (5)3 =3
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fED =) =21=2f(-2)= ()2 =22=4f(-3)= ()3 =2°=38
Next form a table from these values.
X -3 -2 -1 0 1 2 3

F(x) | 8 4 2 1

N

1 1
2 8

Then, plot the corresponding points on a coordinate plane and connect them with a smooth curve

for the desired graph

Let’s examine some characteristics of the graph of the exponential function

1 X
- 2_x - (_>
f@) .
e A vertical line will cross the graph exactly at one point. The same is true for a horizontal

line. The vertical line test shows that this is indeed the graph of a function. Also note that

the horizontal line test shows that the function is one-to-one.

-

So the graph never touches the x-axis but it approaches the x-axis on the right and cross the y-

e There is no value for x such that

axis at y=1 i.e (0,1) is y-intercept. To the left the function value gets larger. We say that the
values grow without bound. Then we call y = 0(postive x — axis) thehorizontal asymptote.
Note:-
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1. Ifa > 1, the graph increases from left to right. If 0 < a < 1, the graph decreases from

left to right.

2. All exponential graphs will have the following in common

e The y-intercept will be 1.

e The graph will approach, but not touch the x-axis.

e The graph will represent one-to-one functions.

Summery for General Properties of Exponential Function

f(x) =a*fora>1

fx)=a*for0<a<1

Domain is real number

Domain is real number

Range is positive real number

Range is positive real number

Has no x-intercept and (0,1) is y-intercept

Has no x-intercept and (0,1) is y-intercept

f is an increasing function

f has a decreasing function

gl B~ W DN

The graph of f is more approaches to the
negative x-axis as x goes to negative infinity

(i.e negative x-axis is an asymptote)

The graph of f is more approaches to the
positive x-axis as X goes to positive infinity

(i.e positive x-axis is an asymptote)

Forx < 0,0 < f(x) < 1and
Forx>0,f(x)>1

Forx < 0,f(x) >1and
Forx>0,0<f(x)<1

Ifa>b > 1,thena* > b* forx > 0,
a* <b* forx<0anda*=b*forx = 0

If0 <a<b<1,thena* > b* for
x>0and a* < b* forx <0

General shape of the graph 1 i

General shape of the graph f $

The exponential function is always one-to-one. This yields an important property that can be

used to solve certain types of equations involving exponents.

3.2.2.2. Solving Exponential Equation and Inequalities
Ifa>0anda # 1,x,y € R then,

+ a* =aif andonlyif x =y

+ Ifa > 1,thena* > a¥if and onlyif x >y

+ If0<a<1,thena*>a”if andonlyif x <y
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Examplel: find the value of x which satisfies each of the following equations.
a. 2% =64.
Solution:2* = 64
2¥X=2Sx=6

b. /128 = 4%
Solution:— /128 = 42*

= 1285 = (21

— (27)§ = (22)%

=>2§=24X<=>4x=§

7 7
= = —_—
T a3 12

c. 163¥ =g2x-1
Solution:163* = g2*~1
= (24)3* = (23)%1
= 24(3x) = 23(2x-1)
— 212X — 26X-3 3 {2y = 6x — 3

= 12x — 6x = —3

< 12x — 6x = —3

S 6x =3

—3 -1
= _—— =
=% "2

Example: Solve each of the following exponential inequalities
a. (§)3x—9 <1
Solution: (2)3’“—9 <1= (2)396—9 < (Z)o
=3x—9=0
= 3x=9
Sx =3
b. 3¥*29% > 243 = 3**2(3%)* > 3°
= 3%+2>35 ©3x+2>5

=3x>5-2
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=x=1
Exercise 3.12
1. Solve each of the following exponential equation and inequalities

a. 35%+5 =27 c. 63> <1
x 27\x-1 _ 2 x%+2x
b. (9).(8) =3 d. 5 > 125
2. Solve each of the following exponential inequalities
a. 22" 1<32 b. 43%+2 > g2x—1
3. Argue that
a. Ifa>b=>1,thena” > b* forall x € R*.

b. Ifx>yanda = 1,then a* = b*.
3.3 Logarithmic Function

3.3.1, Definition of Logarithm Function

Let x and a are a positive real numbers with a # 1, then the logarithm of x to the base a is
denoted by log} and log} gives answer to the question “for what power of ‘a’ gets ‘x”
Examplel:

logs 25 = 2 because 52 = 25

logz: = —2, because (g)‘2 =

3
2

9

Definition:- Let y is any real number and y = log} , theny = logy if and only if x = a¥

Examplel:

1, Write the following equations in exponential form.

a. logz81 =4

log;81 =4 if and only if 3* = 81
b. log,7=1

log,7=1if andonlyif 7' =7
C. log;%z 3

logi- = 3if and only if (%)3 =
2

1
8
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2, Convert each exponential statement to an equivalent logarithmic statement.
a. 2*=16
2* =16if and only if log, 16 = x
b. 3*=y
3*=yif and only if logz;y = 4

Activity3.12
Compute each logarithm.

a. logs?, b. loge ;- c. log®%%  d, log1 27
3

Rules of logarithm
The following logarithm laws hold for any base a > 0 and a # 1, any positive real number x
and y, and any real number n.
1. Product Rule
log,xy =log,x +log,y
Proof; letx = a™ < log,x =mandy =a" < log,y =n
xy = a™a™ = a™*"(Power rule of exponent)
xy =a™" o log, xy=m+n=1log,x +log,y
~ log, xy = log,x +log,y
2. Quotient rule
log, = logqx —log,y
Proof; exercise left for students
3. Power Rule: -
log, x™ =nlog, x

Proof; exercise left for students

4. Change of base

log, x

log,y’

Proof; Letlog, x = ¢ & y° = x, for c is any real number.

log, x = y#1

Hence; log, x = log, y¢, for any positive real number a # 1

log,x =clog,y
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_ loggx

c =
log, y
l log, x
S 10 X =
5% " logay
5.0ther rules

log,1 =0, a'°8a¥ = xlogn x = Llog, x

log,a =1, log,: = —log, x,log,a™ =n

Examplel; Simplify each of the following logarithms
a. loge®+ loge* = loge™* = loge®® =2

b. logs: = —log; 81 = —log; 3* = —4log; 3 = —4

C. 10ga% — 10g4® = l0gs*®"® = logs'® = 2

Exercise3.13
1. Rewritelog3* + logs?as a single logarithm.
2. Rewrite as a single logarithm.

a. 3logs(x +2) —2logs(x — 1) — 2logs(x — 7)

b. Log2(x*— 16)— logz(x + 4)
Logarithmic Function
To develop the idea of logarithmic function we must return to the exponential function

f)={(xy):y= a*,a>0, a=+1}
Recall that exponential function is a one to one function, since it passes the Horizontal Line Test
and therefore must have an inverse function. This inverse function is called the logarithmic
function with base a. To find the inverse function interchanging the role of x and y, we have the
inverse function
') ={(xy)x=a,a>0, a1} - ———————— — (D
i.eThe logarithmic function g with base ‘a’ is the inverse of the functionf(x) = a*,a > 0,a # 1.
We write g(x) = log, x. That is,
y =log} if and only if x = a”

The first equation is in logarithmic form and the second is in exponential form. In general any
function defined in this form is called Logarithmic Function
Every logarithmic function of this form has all positive real numbers as its domain and all real

numbers as its range.
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Examplesl;
y =log%,y =logi, y = log¥ , etc are logarithmic function
2

The following are properties of an exponential function and are useful in drawing their graphs.

+ If x=1,then f(x) = logk = 0 for all real number a > 0, a # 1, and hence the graph of
any function y = log¥ pass through the point (1,0). That is the graph of any logarithmic
function cross the x-axis at (1, 0) and never cross the y-axis at all.

+ Ifa>1theny =log} > 0forall x >1andinfacty = logX keeps increasing without
bound as x increases. On the other hand for 0 < x < 1, we get y = log}X < 0 keeps
decreasing indefinitely to negative infinity as x approaching to zero and the graph
approaches to the negative y-axis.

+ If 0<a<1, then log¥ <O0forallx>1, and for 0 < x < 1 we have logX > 0. In
fact y = logZ keeps increasing without bound as x goes to zero andthe graph approaches
to the positive y-axis

+ The graph of g(x) = logZis the reflection of the graph of y = logialong the x-axis.

3.3.3. Graph of Logarithmic Function

Steps in graphing logarithmic Function

1. Establish a table of values by considering the function in the form of y = log¥
2. Plot points from the table of values on the coordinate axis
3. Connect these points with a smooth curve to form the graph.

Examplel; draw the graph of the following functions and see their properties.

X

a. y=Ilogy b.y =log:y
2

Solution; y = log¥

First choose convenient value for x, and summarize as in the table below.

X 1/8 1/4 1/2 1 2 4 8

log¥ | -3 2 -1 0 1 2 3

Then, plot the corresponding points on a coordinate plane and connect them with a smooth curve

for the desired graph
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5 -4 -3 -2

The graph of f(x) = log¥
Let’s examine some characteristics of the graph of the exponential function
f(x) =logy

e A vertical line will cross the graph exactly at one point. The same is true for a horizontal
line. The vertical line test shows that this is indeed the graph of a function. Also note that

the horizontal line test shows that the function is one-to-one.
e The function is not defined at x = 0, this implies the graph never cross the y-axis, but it
approaches to the negative y-axis, Then we call x = 0(negative y — axis) the vertical

asymptote and cross the x-axis at x = 1i.e (1,0) is x-intercept.

b. y=log?
2
First choose convenient value for x, and summarize as in the table below.
X 1/8 1/4 Ya 1 2 4 8
logi 3 2 1 0 -1 -2 -3
2

Then, plot the corresponding points on a coordinate plane and connect them with a smooth curve

for the desired graph
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The graph of f(x) = log?

Let’s examine some characteristics of the graph of the exponential function
f@x) = logt
2

e A vertical line will cross the graph exactly at one point. The same is true for a horizontal
line. The vertical line test shows that this is indeed the graph of a function. Also note that
the horizontal line test shows that the function is one-to-one.

e The function is not defined at x = 0, this implies the graph never cross the y-axis, but it
approaches to the positive y-axis, Then we call x = 0(postive y — axis) the vertical
asymptote and cross the x-axis at x=1 i. e (1,0) is x-intercept.

Note

1. Ifa > 1, the graph increases from left to right. If 0 < a < 1, the graph decreases from
left to right.

2. All logarithmic function graphs will have the following in common

e The x-intercept will be 1.
e The graph will approach, but not touch the y-axis.

e The graph will represent one-to-one functions.

128



Summary for General Properties of Exponential Function

f(x) =logXfora>1 f(x) =logX¥for0 <a <1

1| Domain is positive real number 1| Domain is positive real number

2| Range is real number 2| Range is real number

3| Has no y-intercept and (1,0) is x-intercept 3| Has no y-intercept and (1,0) is x-intercept

4| fis an increasing function 4| f has a decreasing function

5| The graph of f is more approaches to the | 5| The graph of f is more approaches to the
negative y-axis as X goes to zero(i.e negative positive y-axis as X goes to zero (i.e positive
y-axis is an asymptote) y-axis is an asymptote)

6| For0 <x <1, logl <0and 6| For0 <x <1,logX > 0and
Forx > 1, logy >0 Forx > 1, logy <0

7/1fb>a>1,thenlogy > log} forx>1, |7/1f0<b <a <1, thenlogy > log? for
log} <log} for0 <x < 1land x> 1andlogy <logf for0<x <1

logX =logy forx = 1

8| General shape of the graph 8| General shape of the graph

e

Activity 3.13
i. Sketch the graph of each of the following functions
a. f(x)=log¥ b. f(x) = logi c. f(x) =logZ,
3

X

ii. Draw the graphs of f(x) =1logi and f(x)=log¥ on the same

1
5
coordinate plane and

compare their graphs.

Note; The functions, y = logX and y = a* are inverse to each other, then their graphs are
symmetric with respect to the line y = x.

Activity 3.14

Draw the graphs of f(x) = log¥, and g(x) = 10* on the same coordinate plane and compare
their graphs
The logarithmic function is always one-to-one. This yields an important property that can be

used to solve certain types of equations involving logarithms.
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1.1.4.4. Solve Equation and inequalities involving logarithms

Definition: A logarithmic equation is an equation that contains a logarithmic expression.
Solving Logarithmic Equations

When asked to solve a logarithmic equation, the first thing we need to decide is how to solve the
problem. Some logarithmic problems are solved by simply dropping the logarithms while others
are solved by rewriting the logarithmic problem in exponential form.

How do we decide what is the correct way to solve a logarithmic problem?

The key is to look at the logarithmic problem and decide if the problem contains only logarithms
or if the problem contains terms without logarithms.

+ |If we consider the problem contains terms without logarithms. So, most probably the
correct way to solve these types of logarithmic problem is to rewrite the logarithmic
problem in exponential form.

+ |If we consider the problem contains only logarithms. So, the correct way to solve these
types of logarithmic problem is to simply drop the logarithms.

When solving logarithmic equation, we may need to use the properties of logarithms to simplify
the problem first.
Solving Logarithmic Equations Containing Only Logarithms
Let x and y are positive real numbers and a > 0 and a # 1. Then
log,x =log,y if and only if x =y
This statement says that if an equation contains only two logarithms, on opposite sides of the
equal sign, with the same base then the problem can be solved by simply dropping the
logarithms.
Steps for Solving Logarithmic Equations Containing Only Logarithms
Stepl. Determine the domain of the problem.
Step2. Use the properties of logarithms to simplify the problem if needed.
Step3. Rewrite the problem without the logarithms.
Step4. Simplify the problem.
Stepb. Solve for x.
Step6. Check your answer(s).
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Remember we cannot take the logarithm of a negative number, so we need to make sure that
when we plug our answer(s) back into the original equation we get a positive number. Otherwise,
we must drop that answer(s).
Steps for Solving Logarithmic Equations Containing Terms without Logarithms
Stepl. Determine the domain of the problem.
Step2. Use the properties of logarithms to simplify the problem if needed.
Step3. Rewrite the problem in exponential form.
Step4. Simplify the problem.
Stepb. Solve for x.
Step6. Check your answer(s).
Examplel; solve each of the following
a. logz(x+12) —logz(x —3) =logz 6
Solution; Domain= x+12>0andx -3 >0
=x>-12and x >3
~ Domain of the problemi= {x: x > 3}

Now,log;(x + 12) —logs(x — 3) = logz 6

x+12

log, po— =log; 6
x+12
x—3 =6

x+12 =6(x—3)
x+12=6x—18
6x —x=12+18
5x =30
xX=6
Check; logs(x + 12) — logz(x — 3) =log; 6
log3(6 +12) —logs(6 — 3) =log; 6
log; 18 —log; 3 =log; 6

18
log3? = log; 6

log; 6 = log; 6(0k)
b. log,(x +2) +log,(x —5) =3
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Solution: Domain = x+2>0andx—5>0
=x>-2andx >5
~ Domain of the problem = {x : x > 5}
Now, log,(x + 2) + log,(x —5) =3
log,(x +2)(x—5) =3 (x+2)(x—5) =23
x?—-3x—-10=38
x2—-3x—-18=0
x2—6x+3x—18=0
(x—6)(x+3)=0
x=6o0rx=-3
x = —3is not in the domain, so it is not the solution
Let us check for x = 6
log,(x + 2) + log,(x —5) =3
log,(6 + 2) + log,(6 —5) =3
log,8+1log,1 =3
3+ 0 = 3(ok)

Logarithmic inequalities

Let x and y are positive real numbers and a > 0 and a # 1. Then
» log,x <log,y if and only if x <y, fora> 1.
» log,x <log,y if and onlyif x >y, for0 <a < 1.
» log,x =log,y if andonly if x =y,foranya>0anda # 1

Example; If f(x) = logs 2x — 1, then
i. State the domain
ii. Determine the value of x, if
a. f(x)=3
b. f(x) <1
Solution;
I. Domain=2x—1>0=x>%
Domain = {x : x >%}
ii. a f(x)=3=1logs2x—1=>3
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= logs;2x — 1 > 3logs 5
= logs 2x — 1 > logs 125
Sincea=5>1,
2x —1>125
2x > 126
x =63
b. f(x) < 1 (Exercise)
Exercise 3.14
iii. Solve each of the following logarithmic equations and inequalities

a. 1+ 2logy(x+1)=2log,x

b. (log(x))? =2 log(x) + 15

c. xlog(x + 1)=x,forx+0

iv. Solve each of the following logarithmic equation and inequalities

a. loge®*¥ +loge® ¥ =1

b. log(x +5) +log(x — 2) = log(4 — 2x)

C. logs(x + 3)x10gxs3)(2x + 1) x10g(2x41) 3x =1

d. log,(x +3) =3 +log,(6 —x)

e. logs®-9> Jogs**?

f. log,¥< logs®*+?®

g. log,x <3+ 2log,2
The Natural Logarithmic Function
f(x) = e*is one-to-one natural exponential function and so has an inverse function. This inverse
function is called the natural logarithmic function and is denoted by the special symbol Inx,
read as “the natural log of X”. Note that the natural logarithm is written without a base. The base
is understood to be e.
Because the functions given by f (x) = e*and g(x) = I n x are inverse functions of each other, their

graphs are reflections of each other in the line y = x.
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oy

i

(xi=f"lx)=Inx

Reflection of the graph of f (x) = eabout the line y = x
Common logarithms
If x > 0, then the common logarithm of x is the logarithm of x to the base 10 and denoted by
log¥,. For convenience, the base of the common logarithm is not often written.
i.e for each x > 0, log¥, is simply written as log x
Before we discuss some rules for finding common logarithm of numbers, we note that any
positive number ‘X’ can be expressed in the form;
x =ax10", where 1 < a < 10 and 'n’ is any integer
This form of a number xis known as the scientific notation (standard form) of the number.
Now to find the common logarithm of a number ‘X’;
logx =logax10™
= loga + log10™
=loga +nlog10

logx =loga+n
Where 0 < loga < 1is called mantissa of logx and ‘n’ is called characteristics of log x
=~ For any positive real number x, its common logarithms can be written as;

log x = Mantissa + Characterstics

We can see that any positive number different from one can be base of a logarithm. It is imperial
to prepare a logarithm table for each base. However the change of base rule has reduced our
problem of constructing a table for each possible base. So it is sufficient to construct a logarithm
table only for common logarithm to determine the logarithm of any number to any base.
In general the logarithm of a number between 1 and 10 is a decimal between 0 and 1 and find

this value from the common logarithm table. The common logarithm table is a table of mantissa.
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The mantissa of log¥, can be given to any decimal place but it is often given only a decimal
number of four decimal place.
Example; find the common logarithm of
a. 26300 b. 0.0002630, given that log2.63 = 0.4200
Solution:
a. 26300 = 2.63 x 104, then
log26300 = log 2.63 x 10*
=log2.63 + log 10*
=log2.63 +4log 10
log26300 = 0.4200 + 4 = 4.4200

b. 0.0002630 = 2.63 x 107*
log0.0002630 = log2.63 x10™*
=log2.63 +log10™*
=log2.63 —4log 10
1og 0.0002630 = 0.4200 — 4 = —3.5800
All the above numbers we considered at most three significant digits. Suppose let as find the
logarithm of 3485.
3485 = 3.485x 103
log3485 = log(3.485 x 103)
= log3.485 + log 103
= log 3.485 + 3log 10
=log3.485 + 3
log 3.485 Can’t found from the logarithm table but

log3.48 = 0.5416
log 3.485 =?
log3.49 = 0.5428

Difference (0.5428 — 0.5416 = 0.0012)
Since 3.485 is mid way between 3.48 and 3.49, then

log3.485 ~ 0.5416 +2(0.0012) ~ 0.5422

Examplel; find the mantissa and characteristics of the following
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a. logx =5.6234 b.logx = —2.4167
Solution;
a. logx = 5.6234
= 0.6234+5
~ Mantissa of log x is 0.6234 and characteristics of logx is 5
b. logx = —-2.4167
= -2+ (—0.4167)
=-2—-1+1-0.4167
= -3+ 0.5833
=~ Mantissa of log x is 0.5833 and characteristics of log x is -3

Example2; find the common logarithm of the following expression

a (23.2)5x296 (246)3/52.34
' 42.2 " 35623
Solution;
a (23.2)5x296
42.2
(23.2)°x296
log————— =10g((23.2)°> x296) — log 42.2
42.2
= log(23.2)% + 1log 296 — log 42.2
= 5l0g(2.32x10) + log2.96x10% — log 4.22x10
= 5[log2.32 + log 10] + [log 2.96 + log 10%] — [log4.22 + log 10]
= 5[0.3655 + 1] + [0.4713 + 2] — [0.6253 + 1]
= 6.8275+ 2.4713 — 1.6253
= 7.6735
(246)3V/52.34
3/56.23
l (246)3v52.34 2 (E ise)
0 =? (Exercise
V56.23

Antilogarithm
Antilogarithm is the inverse function oflogarithm,and defined as
antilog,(log, y)=y = log,(antilog’)
The antilogarithm in base ‘a’of ‘y’is therefore a”
antilog) =x = a¥ = x
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If x = log”, then y is the antilogarithm of x.
If logx = Mantissa + Characterstics, then
x = antilog(Mantissa + Characterstics)
x = antilog(mantissa)x antilog(characterstics)

To find the antilogarithm of a number, we must properly use the role of mantissa and
characteristics.
To find the antilogarithm of a number

» Find the mantissa in the body of the common logarithm table

> Read the number whose common logarithm is this mantissa

» Then, by the proper use of the characteristics fix the decimal place
Examplel; find the anilogarithm of 4.2833
Solution: let x is antilogarithm of 4.2833

logx = 4.2833 = 0.2833 + 4
antilog(logx) = antilog(0.2833 + 4)
x = antilog(0.2833)x antilog(4)
From the common logarithm table antilog(0.2833) = 1.92 and antilog(4) = 10*. So
x = antilog(0.2833)x antilog(4)
=1.92x10*
= 19,200

Example2; find the antilog of -6.4647.
Solution; (excrsise)
Computition using logarithms
Steps to compute any numerical expresion using the concepts of logarithm;

1. Find the logarithm of the exprssion

2. Write the result obtaind in step one as the sum of mantissa and characterstics.

3. Find the antilogarithm of the result obtaind in step two.

4. The result obtained in step three is the value that we want.
Example3; simplify each of the following using the concept of logarithm.

3
a. 36.275x 123.514 o V563 x4.52

86400
p, 658000345 q (246)3y/52.34
. 845 " 35623
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Solution; simplify only d, the rest are exercise for the reader.

. (246)3/52.34
' 156.23

(246)3+/52.34
(0)
{56.23

= log(246)? + log(52.34) — log(56.23)

= log(246)3V52.34 — log ¥/56.23

1 1
= 310g(2.46x10?) + 7 (log 5.234x10) —  (log 5.623x10)
1 1
= 3[log2.46 + log10%] + 5 [log5.23 + log10] — 3 [log5.62 + log 10]

1 1
= 3[0.3909 + 2] + > [0.7185 + 1] — 3 [0.7497 + 1]

=7.1727 + 0.8593 — 0.5832

= 7.4488
246)3/52.34
0 ( 3) =7.4488 =7 + 0.4488
v56.23
246)3/52.34
( - ) = antilog(7 + 0.4488)
v56.23
= antilog7 + antilog (0.4488)
=107x2.81
= 28,100,000
Activity 1.15
1. Find the common logarithm of the following number
5
a. 564,421,000 b, XU (564,421,000  p2asxea s
845 (0.814)

2. Find the antilogarithm of the given number
a. 4.6542 b. -0.5490 c. 6.6542 d. -3.5490

3. Use common logarithm table and solve for X, if logx = 2.0150
4. Iflog2.54 = 0.4048, without using common logarithm table find;
a. log25400 b.log0.00254 c.log254

5. Use common logarithm table to solve for x,
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6. Iflog3.12 = 0.4942, without using common logarithm table find;
a. log31200 b.log0.00312

1.1.4.5. Application of Exponential and Logarithmic Function

i. An Interest Application
If an investment of P Birr earns interest at an annual interest rate ‘r’and the interest is

compounded ‘n’times per year, then the amount in the account after‘t’years is given by

nt

A=p (1 + %)

Example; If Birr 1000 is placed in an account with an annual interest rate of 6%, find out how
long it will take the money to double when interest is compounded annually and quarterly.
Solution; given, p = 1000, n =1 r = 6% =0.06 and A = 2x1000 = 2000.

We want to find the time (t =?)

e Compounding interest annually.

r nt
A=p(1+ E)
0.06\"
2000 = 1000 (1 +T)
2000
t —_— —
(1.06)t = 1000
log?2 0.301
. = [—1 =10 1.06 = = = . ~
(1.06)t =2 t =log 2 11.897 = 12

log1.06  0.0253
=~ After 12 year the money becomes double
e Compounding interest quarterly.(Exercise)

ii. A decay Application
Example 2;Aradioactive substance of original weight 100grams, which reduced by 5% each

year, then find the weight of the substance after 20 years.
Solution: let W, is the weight of the substance after nth year; then
W, = 100(1 — 0.05)™ = 100(0.95)"
If n =20, then
W, = 100(0.95)2°
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logW,, =10g 100(0.95)%° = log 100 + 10g(0.95)?° = 2 + 2010g9.5x107?
=2+ (log9.5 +log107!) = 2 + 20(—1 + 0.9777) = 1..5530
W,, = antilog(1.5530) = antilog(1 + 0.5530) = antilog(1)xantilog(0.5530)
= 10x3.57 = 35.7

= After 20 years the substance has 35.7grams remains
iii. A Population Application
Examplel; A town’s population is presently 10,000. Given a projected growth rate of 7% per
year,t years from now the population P will be given by

P =10,000e%°"
In how many years will the town’s population double?
Solution; given P = double = 2x10, 000 =20,000, t="?

P =10,000e%°"

20,000 = 10,0007t
007t = o
0.07t = In2

t= ln_2 =99
0.07
The population will double in approximately 9.9 years.
iv. Sound Intensity
The response of the human ear to sound waves follows closely to a logarithmic function of the
form R =k log I, where R is the response to a sound that has an intensity of I, and k is a constant

of proportionality. Thus, we define the relative sound intensity level
I
SL = 10log—
Iy

The unit of SLis called the decibel (abbreviated dB). I is the intensity of the soundexpressed in
watts per meter and lois the reference intensity defined to be 102 w/m?,

Example; If we measured a sound intensity to be 560 greater that the threshold reference, what
would be the sound level expressed in dB?

Solution;

I
SL = 1010g1—
0
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560x10712
10-12
= 10[0.7482 + 2] = 10[2.7482] = 27.484B

Example; The threshold of pain is about 120 dB. How many times greater in intensity (in w/m?)

SL = 10log = 1010g(5.60 x 10%) = 10[log 5.60 + 2]

is this?(Exercise)
v. The pH of a Solution
The pH of a solution is a measure of the acidity of the solution. It is defined as:
PH = —log[H;07]
Where; [H;07] is the concentration of hydronium ions in the solution.
Examplel; Calculate the pH of a solution, if the concentration of hydronium ionsin the solution
is 0.0125M.
Solution:H;0% = 0.0125M, then
PH = —log[H;0%] = —10g[0.0125] = —log[1.25x107?] = —[-2 + log 1.25]
= —[—-2 + 0.0969] = —[-1.9031] = 1.9031

Exercise 3.15
1. If Birr 5000 is placed in a an account with an annual interest rate of 9%, how long will it take
the amount to double if the interest is

a. Compounded annually

b. Compounded semi annually

c. Compounded quarterly

d. Compounded monthly
2. The radioactive element strontium 90 has a half-life of approximately 28 years. If Ao is the

initial amount of the element, then the amount A remaining after t years is given by
1 ¢
A(t) = Ao(E)ﬁ
a. If the initial amount of the element is 100g, in how many years will 60g remains?

b. In how many years will 75% of the original amount remains?(hint let A = 0.75A0)

3. The decibel (dB) rating for the loudness of a sound is given by
[
L=10log—
Iy

Where | is the intensity of that sound in watts per square centimeter and I is the intensity of
the “threshold” soundl, = 1071*W/cm?. Find the decibel rating of
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a. Atable saw in operating with intensity I = 107°W/cm?

b. The sound of a passing car horn with intensity I = 1078W/cm?

< Summary

®,

% Let aand b are any real numbers, m and n are positive integers;

m n — m+n
* C(lab)i?‘ _ a?‘xb“} Product rule

a' _ G
bn—(b),b;tO

* Quetient rule

am -
—=a"™, a#0

am
(@™)™ = a™"Power rule

1 1
-n — n — 1
at=—eadt = Negative exponent

a® = 1,a # 0 Zero exponent

- £ +F

(a)% = Ya, when Va is a real number,n > 1
b (@7 = (@)= (Va)" = Vam
< The principal n™ root of a is denoted by V/a and defined as
+ The positive n™" root of a if a>0 and n is even
+ The negative n™ root of a, if a<0 and n is odd.
+ 0,ifa=0
% Ifaand b are real numbers and n and m are positive integer greater than 1, then

+ 3/a.%Vb = Vab, if nis even then a and b are non-negative real numbers

n
* nig =" %, b # o,if n is even then a and b are non-negative real numbers.

* W = "%/a,if nm is even then a is non-negative real number.
+ Exponential function is a function of the form
f(x) =a*,a > 0,a # 1,The number ‘a’ is called the base of the exponential function.
Domain of logarithmic function is positive real number and its range is real number.
+ |If a > 1 the function is an increasing function and if 0 < a < 1 the function is a
decreasing function.
+ The graph of g(x) = (5)*is the reflection of the graph of y = a*along the y-axis.

+ All exponential graphs will have the following in common
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= The y-intercept will be 1 has no x-intercept.
= The graph will approach, but not touch the x-axis.
= The graph will represent one-to-one functions.
# Ifa>1,then 0< f(x) <1 forx<O0and f(x)>1,forx>0,
+ If0<a<1,thenf(x)>1forallx<0and0< f(x)<1 Forx>0
Ifa>0anda # 1,x,y € R then,
+ a* =a’if andonlyif x =y
+ Ifa>1,thena® > aYif andonlyif x >y
+ If0<a<1,thena*>aYif andonlyif x <y
Let x and a are a positive real numbers with a # 1, then the logarithm of x to the base a is
denoted by log} and givesanswer to the question “for what power of ‘a’ gets ‘x’ ”
For any base a > 0 and a # 1, any positive real number x and y, and any real number n.
+ log, xy = log, x + log, y Product rule
+ log,§ = log, x —log, y Quetent rule
+ log,x™ = nlog, x Power rule

log, x
logqy

+ log,x = , ¥ # 1 Change of base

Logarithmic function is a function of the form
f(x) =log%a>0anda#1
+ y=loglifandonlyif x =a”
Domain of logarithmic function is positive real number and its range is real number.
+ The graph of any logarithmic function cross the x-axis at (1, 0) and never cross
the y-axis at all.
+ If a > 1 then y = log¥ is always an increasing function, whereas, if 0 < a < 1,
then y = logZ is always a decreasing function

+ The graph of g(x) = logX and y = logi are symmetric about the x-axis.

If b >a>1,thenlog} > log} for x > 1, logX < logj for 0 <x < 1and
log® = logiforx = 1

If0< b <a<l1thenlog} > logy for x > 1andlog} < logY for0 <x <1
Let x and y are positive real numbers and a > 0 and a # 1. Then

+ log,x <log,y if and only if x <y, fora> 1.
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+ log,x <log,y if and onlyif x >y, for0 <a < 1.
+ log,x =log,y if and only if x = y,for anya >0and a # 1
If x > 0, then the common logarithm of x is the logarithm of x to the base 10. For

S

convenience, the base of the common logarithm is not often written.
f(x) = e*is one-to-one natural exponential function and so has an inverse function. This

S

inverse function is called the natural logarithmic function and is denoted by the special

symbol Inx,
Antilogarithm is the inverse function of logarithm, and defined as

S

antilog,(log, y)=y = log,(antilog})
Steps to compute any numerical expresion using the concepts of logarithm;

°

= Find the logarithm of the exprssion
= Write the result obtaind in step one as the sum of mantissa and characterstics.
= Find the antilogarithm of the result obtaind in step two.
= The result obtained in step three is the value that we want.
LL3 Power Function

Definition: A power function is a function which can be a written in the form
off (x) = ax”,wherer is a rational number (constant) and a € R, isa
fixed111 number.

Note: Don’t confuse power function with exponential functions.

v' Exponential function: -y = a*(a fixed base is raised to a variable exponent).
v" Power function: - y = ax"(a variable base is raised to a fixed exponent).

Examplel: - which of thefollowing are power function and which are not?

v oa). f(x) =5x*+1 b). f(x) = 5x_73 0. f(x) = i/% D). f(x) = i/:lx E). f(x) =
x%2 F).f(x) = Zx_g

Solution: d) power function written in the form off (x) = ax”

1 1
Thus, f(x) = i/:ix = (i)i = (iE)xEthis is power function whicha = iE

b).f(x) = "2—2 =f(x) = %xzis a power function which a = %

). f(x) = 2*is not power function( it is exponential function).
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Excersice for the studentsthe rest all the above.
The Graph of Power Function

The following fingers give you some of the various possible graphs of power function with
rational expression. A

1. f(x) =ax",risoddand r> 0
I. Ifa>0
Domain = R
Range = R
Odd function
Increasing

A
v

Y V V

A\

Example: f(x) = x¥x>,x7, — — —

ii. If a<0
» Domain =R
» Range=%R

» 0Odd function
» Increasing

A
v

Example: f(x) = —x3—x>,—x7,— — — A

2.f(x) =ax",risanevenand r >0

A
v

i Ifa>0

» Domain =R
Range= [0, o0)
» Even function v

A\

ii. Ifa<0
> Domain =R
» Range= (—o0,0)
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> Even function

3. f(x)=ax",risoddand r<0

I If a>0
» Domain = R/{0}
» Range= R/{0})
» 0Odd function
» Decreasing function

Example :-f(x) = x 3x75,x77,— — —

ii. If a<0
» Domain = R/{0}
> Range= R/{0})
» 0Odd function
» Increasing function

Example :-f(x) = —x3—x75,—x77,— — —

A

<

v

4. f(x)=ax %, nisevenand n < 0 and m is odd

ii. If a>0
» Domain = R/{0}
» Range=R/{y:y > 0}
» even function

2 -4 -6
Example:-f(x) = x73,x3,x5,— — —

iii. If a<0
» Domain = R/{0}
» Range= R/{y:y < 0}
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> even function

2 -4 -6
Example:-f(x) = —x73,—x3,—x5,— — —

5 flx) = x%, n is even and m is odd, then the graph of f.
» Not Symmetric
» Neither even nor odd
» Domain = [0, o)

> Range= [0, ) < >
m 13 _ _nisevenand misodd
n 2 4
v
f(x) = xm, m > nniseven and mis odd,then the graph off.
A

m_33 7 _ _nisevenandmisodd
n 2°4°2

v

A

6. f(x)= x%, n is oddand m is Even, then the graph of f.
»  Symmetric w.r.t Y-axis
» even function
» Has domain real number
» Hasrange=0<y < o

2 4
Example:- f(x) = x3,x5

f(x) =xm,

v

A
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Example:- f(x) = x_?z

-1
7. f(x) =x =, nisodd, then the graph of f.

» Symmetric

» 0dd function

» Increasing function.
» Domain = R/{0}

A
v

-1 -

Example: - f(x) =x3 x5 -

.
5,X 7
N.B all power Function of the formax™ with a = 1satisfies multiplication property of

flxy) = f().f(»)

Example: which of the following power function does not satisfies the condition

Fy) = FGO.fO)
). F(x) = \f b). Fx) = 3

). f(x) = xg d).f(x) = 2x*

Solution: a),.f (xy) = \/xzy = \/%\/% =f(x).f(y)

c. flxy)=(xy)?=x3%=f).f»)
d. .f(xy) = 2(xy)* = 2x*y*

But f(x).f(y) = 2x*.2y* = 4x*y*
Hence f(xy) # f (). f(y)

3.4 Trigonometric Function and their graphs

Basic terminologies

Given any op it rotate about the point O to a new position either clockwise or counter clockwise
direction, it forms an angle say 6, then

b. The initial position of the ray is called initial side of the angle
c. The terminal position of the ray is called the terminal side of the angle @
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0

L4

ray rotated in clockwise ray rotated in counter- clockwise direction
direction
Positive and Negative angles

+ An angle formed by rotating the ray in counter-clock wise is considered as a positive
angle

+ An angle formed by rotating the ray in clock-wise direction is considered as a negative
angle

Example: - Identify whether each of the following angles are positive or negative and indicate
the initial and terminal sides.

P M
> a
06
Q
Angle a is negative angle initial side is oP Angle 0 is positive angle initial side is(ON) ~

and terminal side is (OQ) “terminal side is (OM) ~
Angles in standard position
An angle in coordinate plane is said to be in standard position, if

+ |ts vertex is at the origin and
+ Its initial side lies along the positive x-axis.

The terminal side of an angle in standard position lie either I, Il, 111 or IV quadrant.

Example: - Considered the following angles in standard position where their terminal side is in

the I, 11, 11l or IV quadrants respectively.

A A y
_ ) \v

2) b) 0 a |7

v
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15tquadrant angle  2™¢quadrant angle3™ quadrant angle 4" quadrant angle

Definition:- Angles in standard position having the same terminal side are called co-terminal

angles.

i.e. let@ is an angle in standard position then 8 + n.360°, n € Z, is co - terminal with 6
For example 45° and — 315°,60° and 420°,are pair of coterminal angles.

e If the terminal side of an angle in standard position lies in the first quadrant, then
it is called the first quadrant angle.

e If the terminal side of an angle in standard position lies in the second quadrant,
then it is called the second quadrant angle. Similar for third and fourth quadrant
angles. The above figure indicates the example of first, second, third and fourth

quadrant angle respectively.
Example: - In which quadrant do the following angles lie?
a) 420°b)1272°c) — 296°d) — 4020°

Solution: - a)420° = 360° 4+ 60° that means 420° is one complete revolution and an additional
of 60°. Hence, 420°and 60°arecoterminalangles. Since 60° lies in the first quadrant, 420°

also lies in the first quadrant.

d) —4020° = 5(—360°) + (—240°), This implies —4020°and — 240° have the same terminal

side in the second quadrant. Therefore —4020° lies in the second quadrant.

b and c are lef for you.

Definition:-Angles in standard position whose terminal side coincide with the coordinate axes

are known as quadrant angles.

Example:.... —360°,—270°,—180°—90°,0°90°,180°270°360°, ... ....n(90°)wheren € Z

are quadrant angles.
The unit of measurements of angles

Angles are commonly measured by using two different units known as degree and radian.
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Degree(°):-consider that on a plane rays are drawn from the same point say O, in such a way

that whole plane is divided by these rays into 360° congruent angles and their interiors.

Inthe figure below, if <

AOBisoneoftheseangles , thenitsdegreemeasuretakento beonedegree (1°).

Radian: -the measure of central angle of a circle subtended by an arc whose length is equal to
the radius of circle. In the figure given below, if the length of minor arc AB is r the measure of
the angle AOB is taken to be one radian, (1rad).

1r

Conversion of Unit,

To convert one unit to other , we have the fact that the circumference of a circle with radius r is
given by 2mr. which means the circumference is measured using the radius as a unit ,it is clear
that circumference of a circle is 2. this means again the circumference is2m rdians. noting that

the whole circle subtends 360°then

2mrad = 360° = 7 rad = 180°.

0

= 1rad = ~ 57.30
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3600 = 2 rad = 1° = 2™ rad
360

= 1%=0.0175rad

Equivalently, the angle Batthecenterofacirclesubtendedbyanarc equalinlengthwith

radius islradian. Thatis® = E = 1rad, asshowninthefigurebelow .

In general if the length of arc is | units and the radius is r unit, then 8 = fradians

This indicates the size of the angle O is the ratio of the arc length to the radian of the circle.
Example: if | = 5cm,r = 2cmcealculate@inradian

Solution

1 5
0 =-=—==2.5rad
r 2

Example: - convert the following degrees to radians, using the above relation
a) 360°h)180°

Solution ;- a) Since360° = 27r, thelengthlofcircumferenceofacirclewithradius

ris 2nrthend = ﬁ = Z%r = 2. Thatmeans360° = 2@

b)Exercise!

Vs
1800°

In general, to convert degree to radian we multiply the given degree measure by

180°

andDegree = ginen radiansX

I3 3 — 3 ‘r[
i.eRadians = given degreeX 1800
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Example: - convert each the following degree to radians

a) 60°h) — 150°¢) 240° d)—180°

Solution:a) 60° = 60°X —— = Zradb) — 150° = —150°X — = —rad
1800 3 180 6
canddExercise!
Example ; converteachofthefollowingradianstodegree .
s b -7 27‘[d 107
Db gIFD3

Solution : a) % = L x 2800 _ 1807 _ jgogyziom _ Z10m 1807 _ _ g0

12 12 T 12 3 3 12

b and c left for exercise!

3.3.2.1Definition of Trigonometric Functions

Let Obeanyangleinstandardposition, p(x, y)beapointonthe terminal sideof the angle 6
different from the origin and rbethelengthofOP = /x? + y?2, asshownbelow .

A

yP (x,¥)

Ox

Based on the above fact the trigonometric functions are defined as follows:

) ) oppositeside 'y
sine® = sin@ = — ==
hypotenusside r

153



) adjacentside X
cosineB = cosO = — ==
hypotenuseside r

oppositeside 'y
tangentd = tan =———— ==
adjacentside  x

The other three functions, cosecant, secant and cotangent are related reciprocally with the sine,
cosine and tangent functions respectively.

1 r
cosecantd = csc = —— = -
sin@ 'y
1 r
secantf = sec@ = —— = —
cosB x
1 X
cotangentd = coth = —— = -
tan@ 'y

Example: suppose pointp(3,2) is on the terminal side of angle 6, thenfindthevaluesofthe
sixtrigonometricfunctions.
Solution: - consider the figure given below,

W

P(3,1)

p(x,y) = (3,1)
=>x=3andy =1
Use Pythagoras’ theorem to find t;
x2+y2=r23241%2=r?
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r =V 10units

. oppositesideof@ 2 2 2v/10 V10 1 1 510 V10
Then sin® = PP - =-=—=——=—, c¢sch =— =T " 0 5
hypotenusesideof@ r V10 10 5 sin® vio 10 2
5
adjacentsideofangle6 X 3 3410 1 1 10 V10
cosO = ) - 8 =-=—=——, secO= =55 = =
hypotenusesideofangle® r 410 10 cosO 3v10 3v10 3
10
2 1 3
tan9=z=—, cotd = ==
X 3 tan6 2

Note; any co — terminal angles have the same trigonometric values

e sin@ =sin(0 +n.360°) and cscO = csc(0 + n.360°)
e c0sO = cos(0 +n.360°) and secB = sec(0 + n.360°)
e tanO =tan(0 + n.360°) and cotB = cot(0 + n.360°)

Where, n is an element of natural number.
Example; —GivenABC right angled at C. AB=2, AC=+/3, thenfindthebasic

trigonometricvaluesforangleB.

|

B X C

Solution: first you should find the value of BC, given that AB=2, AC=+/3 and BC= x

Now, by Pythagoras theorem, we have
(AC)? + (BC)? = (AB)?,butAC = v3andAB = 2
= x%+ (\/5)2 = (2)?,butyx% = xforx = 0
>x?4+3=4>x*’=1=>x=+1
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But the length cannot be negative; we have to take only positive value of x

=>x=1
Therefore , Ac = /3, BC =1 and AB = 2
BC 1 1 AB
Hence, cosB = B Esece === Eg == 2
SinB = V3 o — 1 AB_ 2 2V3
me= =2 ¢ “sind AC T AC 3 3
AB
. B_AC_\/§_\/§ oo L 1 _BC_1 V3
MR O T ane AT ACT V3 3
BC

Example: Let Sin30° = % ,c0s30° = ? then find the remaining trigonometric .Values of 30°

1
- . Sin30° 2 1
i. tan® = SinB/cosO = tanb o0~V =
2
.. 1 1 1
ii.cscd =—=csc300 =—==1=2
sin® sin30 >
1 0 1 1 _ 243
. = = = = —
. secd = —— = sec30” = — 5=
2
. 1 0 1 1 3
. = = == —=
IV. cotd = — = cot30” = — FE5 V3or
3
1 1 1 cos6
. cotd = tan® tan300 SN T ging
cos0
V3
0_cos30°_z_§ _
cot30” = ———5 = =3 x2 =43
Signs of trigonometric functions
1% quadrant 2" quadrant 3 quadrant 4" quadrant
Sin + + - _
Cos + - - +
Tan + - + ;
Csc + + - -
Sec + - - +
Cot + - + -

3.4.2 Trigonometric values of Angles
Trigonometric values of Angles, some special angles((0° < 8 < 360°)
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0 radian sin @ cos 0 tan 6 csc @ sec @ cot @
0° 0 0 1 0 undefined | 1 undefined
30° d 1 V3 V3 |2 2V3 V3
6 2 2 3 2
45° | % vz | V2 |1 vz vz |1
4 2 2
60° n V3 1 V3 2V3 |2 V3
3 2 2 3 3
90° n 1 0 undefined | 1 Undefined | 0
2
120° | 2m V3 -1 V3 23 |2 —V3
3 2 3 3
135° | 37 V2 —z |1 V2 vz |1
4 2 2
150° | 5@ 11 3| 3 |2 —2v3 | -3
6 2 2 3 3
180° 4 0 -1 0 undefined | -1 undefined
210° m -1 —V3 V3 |2 -2vV3 V3
6 2 T ? T
2259 Sm 2 2 |1 -2 -2 1
6 2 2
240° | 4m —V3 -1 V3 —-2v3 | -2 V3
R R 3 3
2700 3n -1 0 undefined | -1 Undefined | 0
2
300 | 5w | 3 | 1 | —v3 | 23 |2 G
3 2 2 3 3
350 | 7w | VI | vz | Y R 2
4 2 2
330° 11m -1 V3 3 |2 -3 -3
6 2 2 2 3
360° 271 0 1 0 undefined | 1 undefined

3.4 .3. Relationships between Trigonometric Functions

There are different relations between the trigonometric functions. Some of the relations are

reciprocal relations, co function relations, ratio relation and Pythagoras relations. Each of the

relations is discussed as follows:

Reciprocal Relation

Sine and cosecant functions have reciprocal relation.
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sin© =2 and its reciprocal is cscO ==

. 1
Hence, sin©® = — or cscO = —
cscO sin©

Cosine and secant functions have reciprocal relations.

X r
cosO = = and its reciprocal is secO = o

1 1
Hence, cos©O = —— or secO =
secO cosO

Tangent and cotangent functions have reciprocal relations.

X
tan@ = % and its reciprocal is cot@ = —

Hence, tan® = L orcot® = !

coto tan©

The Co function Relation

Consider the above figure;

. T
sin@ = %: cosa, tanO =% = cota and cscO =3—/ = seca

The above relation of six trigonometric functions is known as co-function relations.
The co-functions of complementary angles are equal.

Suppose 8 +a = 90°0r 6 = 90° — «

sin® = cosa orsina = cos© equivalently sinO@ = cos(90° — O)
tan© = cota or tan @ = cotO equivalently tan©® = cot(90° — ©)

sec©O = csca orcsca = secO equivalently sec© = csc(90° — ©)

Example: sin60° = cos30° or  sin30° = cos60°
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tan60° = cot30° or tan30° = cot60°
sec60° = csc30° or sec30° =csc60°
Activity1.16
a. Let sin52° = cos©,then © = — — — — —
b. Let tan® = cot x if o« = 35°,then® = — — — —
c. Letcsc75° = secy,theny = — — — — —

The Ratio Relations

The ratio of two trigopnometric functions yields another trigonometric function.

That is; 222 =22 =Y —gng
cos6 x/r X

00 =X X - ot
siné y/r y

The Pythagoras Relation
From the Pythagoras Theorem on right angled triangle we have
X4y = 2

a\[r

”) 6

X

Dividing each term of the above equation by r?

xZ y2:r2 x y _
e e G H A GO RN

r2 r2 r2

Since, cos© :é and sin® = %:cosze+ sinf@ =1
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Dividing the above equation by x?

x y: _r? Y2 _ TN\2
4L = + (D2 = (=
x2  x2 ;»62:> 1 (x) (x)

Since, tan®@ =

R IR

and secO = £=>1+tan26 = sec?0
Dividing by y?

x2  y? _r?  xyy _ T2
i+ =32 +1= (-
y2 yz y? (y) (y)

Since, cot® = j—/ and cscO = 5:00t26+1 = ¢sc’O

Example: If the point P(x, y) has coordinates (4,3), then find the ratio of six trigonometric

values.
Solution:

The point P (4,3) has both coordinates positive implies p is a point in the first quadrant. Hence,

the values of all the trigopnometric ratios are positive.
Now, r? = x?+y?= 42+3%=r?= 1> = 16+9 =25 = > r=|4+5|=>r=5
cosO =X =25 seco=1=2
T 5 x 4

. 3 5
sin0 =% =2=¢csco=1=2
T 5 y 3

3 4
tan0 =2 =2 coto == ==
x 4 y 3

Example: Given cos 6 = _?3 for © second quadrant angle, find the values of remaining basic
trigonometric ratios.

Solution: from Pythagoras relation we have
Cos?0+sin’0 =1 = sin?0 = 1-c0s%0

. -3 9 . 16
= sin0 = 1-(—)? = 1-—=sin0 = =
5 25 25
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=>sin6:i\/1:6 =42
25 5

But © is second quadrant angle so sin© is positive

. 4
Hence, sin© = s

1
Now,secO= = —
co

1 1 5
csCO=—=— =~
sin6  4/5 4

sin@ 4/5 -4
tanO= =25 -

cos6 -3/5 3

1 -3

cotb= —=——=—

tan6 —-4/3 4

3.4.4. The Sum Angle Formula
Theorem: for any two angles 6 and 8

e cos(0+B)=cosBcosfP +sinBsinf
e sin(B+ ) =sinBcosP + cosPsinb

tan 6+tan 3

e tan(0+pP) = Ttan 6 tan BWhenever sin® # 0,sinf3 # 0,cos0 # 0 and cosf3 # 0

Example; express cos 30° as the sum and difference angle formula
Solution;

e ¢0s30% = cos(20° + 10°) = cos 20° cos 10° — sin 20° sin 10°
e ¢0s30% = cos(15° + 15°) = cos 15° cos 15° — sin 15° sin 15°

= (cos 15%)2 — (sin 159)?

e ¢0s30% = cos(45° — 15°) = cos45° cos 15° + sin 45° sin 15°
e ¢0s30% = cos(60° — 30°) = cos 60° cos 30° + sin 60° sin 30°

Example; Expresssin 20° as the sum and difference angle formula

Solution;
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e sin20° =sin (10° + 10°) = sin 10° cos 10° + cos 10° sin 10° = 2 sin 10° cos 10°
e sin20° =sin (15° + 5%) = sin 15° cos 5° + cos 15° sin 5°

e sin20° = sin (45° — 25%) = sin45° cos 25° — cos 45% sin 25°

e sin20° =sin (60° — 40°) = sin 60° cos 40° — cos 60° sin 40°

Example; Expresssin 20° as the sum and difference angle formula

Solution;

tan 9%+tan 1°
1—tan 99 tan 1°

e tan10° =tan(9° +1°) =

0) __ tan7%+tan3°
1—tan 79 tan 3°

e tan10° =tan(7°+3

0) _ tan 13%—tan 3°

e tan10° =tan(13°-3%) =——F——
1+tan 13" tan 3

Activity 3.17
Express each of the following as a single trigonometric value.

a. sin40°cos20° + cos 40° sin 20°
b. sin40°cos20° — cos40°sin 20°
C. sinAcos2A+ cosAsin24

d. cos50°cos20° + sin 50° sin 20°

e. cosAcos2A —cosAcos24

tan 579 —tan 12°
f. ———
1+tan 57" tan 12

Note;

e cos(—0) = cos 0 and its domain is symmetric;
cosine function is an even function

e sin(—0) = —sin 0 and its domain is symmetric;
Sine function is an odd function

e tan(—0) = —tan 6 and its domain is symmetric;

Tangent function is an odd function

Example; Find the exact value of;
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a. sin75° b. tan 15° + cot 15°
Solution;75° = 45° + 30°(as a sum two special angles)

Hence,
a. sin75% = sin(45° + 30°) = sin 45° cos 30° + cos 45° sin 30°

VB VI 1 B4
T Xy Ty T T

159 = 45° — 30°

tan 45% —tan 30° 1-— i1 V3-1
_ V3 _ V3 _

1+tan 450 tan 300  1+41x— Y3+l 341
AR

b. tan 15° = tan(45° — 30°) =

cot159 = = ! =\/§+1
tan15° v3-1 /31
V3+1
Hence;

x/§—1+x/§—1+\/§+1

V3+1 V34+1 +3-1

V3—-1 V3-1 V3+1 V/3+1 V3-1

=x/§+1X\/§+1+\/§+1+\/§—1X\/§—1
=2-V3+2+V3=4

tan 15° + cot 15° =

Double Angle and Half Angle Formula
Double Angle formula

Theorem; for any angle 8 € R

2c0s%0 — 1
+ 0s20 ={cos?0 — sin?6
1 — 2sin?0
+ sin20 = 2sin O cosH
2tané@
+ tan20 = ——

Example; Let us describe each of the following angles, using the double angle formula;
a. cos4A and cos70°
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b. sin4A and sin 120°

C. tan4A and tan 40°

Solution;

1
260525(41‘1) —1=2cos?24—-1

1 1
cos 4A = < cos? 5 (44) — sin? > (44) = cos?2A — sin?24

1
1- 25in2§(4A) =1 - 2sin?24
cos 70°, Exercise
: 1 1 .
sin4A =2 sin> (44) cos (4A) = 2sin2A cos 24
sin 120°; Exercise

1
2tan (40) 2 tan 20

tan40 = =
an 1—tan2(40) 1—tan?20
2

tan 4A; Exercise
The half Angle Formula

Theorem; for any angle 8 € R

1+ cos@ 0
— |———; for EZ"dand 3" quadrants

( 1—cos®@ 7]
p T; fOT'0<E<1800
smz =1
1—-cos®@ 7]
— |———; for 180° < = < 180°
L 2 2
p
1+ cos@ 0 .
— for 5 in 15tand 4t quadrants
7]
cosi = <
; fo
L 2
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1—cos@
Qz sinf
2 sin 6
1+4+cosO’

; sin® # 0, (6 % 0°,180°)
tan
cosf # —1,(6 # 180°)

Example; Let us describe each of the following angles, using the double angle formula

a. sin6.5% ¢.cos22.5%d. tan22.5°

Solution;

1-cos2(2
a. sin6.5% = 51n( )0 W ’1 cos 13
1+cos 2( . ’1+—
b. co0s22.5° = cos(45)0\[T \/m 2+\/_ JT
2

1-cos45 1 - V2 2\/_ 2
= X— =+2-1
sin4s ﬁ \/f NG

2

c. tan22.5° = tan( 20 =

3.4.5. Graph of Basic Trigonometric Function

Trigonometric functions are real valued functions. The independent variable is the angle x
measured either in degree or radians and expressed in real numbers. As we already know graphs
of functions of one variable are drawn using a coordinate system on a plane. Accordingly the
horizontal or the x-axis of our coordinate system is scaled in radian units. The value of each
function at a certain angle will correspond to the y — coordinate of a point on the graph of the

function.

i.  The Graph of the Sine Function

The sine function y = sinx is defined for any real number x, so the domain of sine function is
the set of real number and the range is the set of all real number between -1 and 1 inclusively and
its graph iscontinuous and smooth curve. Sin(—x) = —Sinx and its domain R is symmetric this
indicates that sine function is anodd function and the graph issymmetric about the origin.
Moreover sinx = sin(x + 2nm) forn € R, this implies sine function is periodic function with

period 2.
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To draw the graph of sine function, we investigate how sinx behaves as the independent variable
X increase from -2m to 2n
. -3 . .
+ As x increases from -2 & to T” and 0 tog, sinx increases from 0 to 1.
- -3 .
£ As X increases fromT” to— 7 and g to 7, sinx decreases from 1 to 0.
. - 3 .
+ As x increases from —r toT” and @ to{, sinx decreases from 0 to -1.

. —_ 3 . .
+ As X increases from 7” to 0 and 7” to 2m, sinx increases from -1 to 0.

Now let as summarize the above facts by the table as follows,

X 2 | —11n| -5 |-3n| —4n |-/m | —¢ | =5 | —2m | "M | —T | —TT |

6 | 3 | 2] 3 | 6 6 | 3 | 2 | 3 | 6

sinx| 0 05 087 |1 087 |05 |0 -05 |-087|-1 |-087|-05 |0

X 0 s s

6 3 3 6 6 3 2 3 6

2T 51 T 7 41 3n S5t | 117w | 21

T
2

sinx| O 05 087 |1 087 {05 |0 -05 |-087|-1 |-087|-05 |0

Now to sketch the graph of sine function, we will plot the coordinate points on the coordinate

plane and joined by a smooth curve as follows.

Yy =sinx

The graph of y = sinx on the interval -2 < x < 27

In each time we increase or decrease the value of the x-coordinates by a multiple of 2, the sine
graph is reapeated and each portion of the graph in an interval of 2m is one cycle of the sine

function.

In general the graph of a sine function throughout its domain has the following forms,
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y=sinx /\

— 3"‘" - iﬂ: 3
T % 2 ; Ryl

L

=
I X
2

3=y

The Graph of y = sinx

ii.  The Graph of the Cosine Function

The cosine function y = cosx is defined for any real number x, so the domain of cosine function
is the set of real number and the range is the set of all real number between -1 and 1 inclusively
and its graph iscontinuous and smooth curve. cosx = cos(—x)and its domain R is symmetric this
indicates that cosine function is aneven function and the graph is symmetric about the y-axis.
Moreover cosx = cos(x + 2nm) for n € R, this implies cosine function is periodic function with

period 2.

To draw the graph of cosine function, we investigate how cosx behaves as the independent

variable x increase from -27 to 2«

+ As x increases from -2 = to—m and 0 to m, cosx decreases from 1 to -1.

+ As x increases from —m to 0 and m t02m, cosx increases from -1 to 1.

Now let as summarize the above facts by the table as follows,

X 27 | =-11mn| -5 | -3n| —4m | -7 | —¢y | =5 | —2m |~ | T - |0
6 | 3 2| 3 6 6 | 3 | 2 3 6

cosx 1 0.87 |05 0 -05 |-0.87|-1 -0.87 | -0.5 05 087 |1

X 0 7T n T 2T 51 T 7 4t | 3w | 5 | 11m | 27
6 | 3 2|73 |76 6 | 3 | 2| 3 | 6

cosx 1 0.87 |05 0 -05 |-0.87|-1 -0.87(-05 |0 05 087 |1

Now to sketch the graph of cosine function, we will plot the coordinate points on the coordinate

plane and joined by a smooth curve as follows.
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The Graph of y = cosx on the interval —2m < x < 27

In each time we increase or decrease the value of the x-coordinates by a multiple of 2m, the
cosine graph is reapeated and each portion of the graph in an interval of 27w is one cycle of the
cosine function. In general the graph of a cosine function throughout its domain has the

following forms,

v A
- |
T _']-'" — COs X
X
-
. A T = & T O W_ﬂ' 2T 5 34T
¥

The Graph of y = cosx

iii. The graph of Tangent Function

The tangent function y = tanx is defined for all x except the value of x that makecosx = 0 and
its range is any real number. Tangent function is always an increasing function throughout its
domain and it is periodic function with periodm. The tangent function is an odd function; since it
satisfies the condition tan(—x) = —tanx and its graph has symmetric about the origin with

vertical asymptotes at

Where n an element of odd integer

That is the graph of tangent function is a curve that increases through negative value of tan x to

0 and then continues to increase through positive value. At odd multiple of % the graph is
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discontinues and then repeats the same pattern, since there is one complete cycle of the curve in

the interval%” <x< gtangent function is periodic with period

Now we can use the table below to draw the graph of y = tanx

X |-2r |—-11m| =5 | -3n| —4n | -7/n | —g | =5m | —2m | "M | 7T 0
6 2 | 3 6 6 3 2 3
tanx| 0 0.58 [1.73 |und |-1.73|-0.58 |0 0.58 |1.73 |und |-1.73 0
x |0 n n n 2w | 5m i 7t | 4w | 3w | 5w 21
6 3 2 3 6 6 3 2 3
tanx| 0 0.58 [1.73 |und |-1.73|-0.58 |0 -0.87 [ 0.58 |und |-1.73 0
[ ] I
— O -
A — 3 T e / . 1 3 —= o X
/ /}’ = tlan x /
The graph of y = tanx
iv. The Graph of Cosecant Function

The cosecant function is defined in terms of sine function;

1

CSCX =

sin x

Since—1 < sinx < 1, therefore—o < cscx < —land 1 < cscx <

That is; the domain of cosecant function is all values of x except the value of x that makes

sin x = 0 and the range of cosecant functionis —co < cscx < —land 1 < cscx < o
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To draw the graph of the cosecant function, we can use the reciprocal of the sine function values.
The reciprocal of 1 is 1; the reciprocal of a positive number less than one is greater than 1; the
reciprocal of -1 is -1 and the reciprocal of a negative number greater than -1 is less than -1. If
x = nm wheren € Z, sinx = 0 and csc x is undefined, then the vertical line x = nm are vertical
asymptotes for the graph of cosecant function. The graph of cosecant function on the interval

—m to 2w is as follows

The Graph of y = cscx on the interval —m to 2w

Activity 3.18
Draw the graph of
a. y=secx b. y =cotx

3.4.6. The Sine and Cosine Laws

Any triangles are seven elements; these are the three sides, the three angles and one area. Solving
a triangle means finding the missing part of these seven elements. If the triangle is right angle
triangle; it is easy to solve by using Pythagoras Theorem, but it is difficult to solve acute and

obtuse angle triangle. To reduce this problem let us drive sine law, cosine law and area law.

The Law of Sine
If A, B, and C are the measures of the angles of any triangle and if a, b, and c are the lengths of
the sides opposite the corresponding angles, then

c a b sinC_sinA_sinB

- = — = — or = =
sinC sinA sinB c a b
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Proof; Triangle ABC is a non-right angled triangle.

In triangle ABC, B
Draw a perpendicular line from B to AC
a
meeting AC at D. This creates two right angled ¢ |
1
triangles ABD and BDC
In triangle ABD: A C
D b

sinA=E = h=csihA———————————— — — — — — (%)

In triangle BDC:
: h :
smC=E = h=asinC——————————— — — — — — (*x)

From () and (x*)
asinC =csinA

We get

a Cc

______________________ (1)

sin A - sin C
Similarly; draw a perpendicular line from C to AB meeting AB at E. This creates two right

angled triangles ACE and BEC. CE = h'is the new altitudefrom C to AB.
In triangle ACE:

!

h
SinA=F:>h’=bsinA ———————————————— i)

In triangle BEC:

sinB=;=>h’=asinB ———————————————— (ii)

From (i)and (ii)

asinB = bsinA

We get;
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a b
sinA  sinB

______________________ ©)

From(1)and (2); we get

c a b

sinC - sin A - sin B
To use the sine rule, choose an appropriate pair, depending on what you know in the triangle.

c _ a a _ b c _ b

sinC ~ sinA  sinA  sinB  sinC  sinB
Due to the fact that the Law of Sine uses proportions that involve both angles and sides, the
following pieces of information are needed in order to solve an oblique triangle using the Law of
Sine:
e If two sides and the angle not included between them are given
e Iftwo angles and the side between them are given.

e |Iftwo angles and one side that is not included in the angles.

Example; Find the length of BC in triangle ABC

B

Solution;
m(< A) + m(<B) + m(< C) =180°
74% +86° + m(< C) = 180°
160° + m(< C) = 180°

m(< €) =180° — 160° = 20°
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c a 35 BC
= et =
sinC sinA sin 200  sin 749

o 35sin74° 35(0.9613) 33.6455
~ sin20° 03420  0.3420

Activity 3.19

Find the length of AC in triangle ABC

The Law of Sine cannot be used directly to solve triangles if we know two sides and the angle

between them or if we know all three sides. In these two cases, the Law of Cosines applies.

The Law of Cosine

In any triangle ABC, we have "—i
a’? = b? + c? — 2bccos A (,/ b
/'/
b? = a? + ¢? — 2accos B B Z C
ol -

c? = a® + b? — 2abcosC

Proof; consider triangle ABC
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From the right triangle ADC; we deduce

x24+h?=p?——————— ——— —— - ————— —— (D
And
cosA=%ﬁx=bcosA ——————————————— (2)
From the right triangle BDC; we deduce
(c—x)+h*=a*=a*=c*-2cx+ (x*+h*) ———— — — (3)

Substituting equations (1)and (2) in to (3), we get;
a? = c? — 2c(bcosA) + b?
a? = b? + c2 — 2bccosA
Similarly

b%? = a? 4+ c? — 2accosB
c? = a%? 4+ b? — 2abcosC

Note; Use the law of cosine to solve triangles;
e If we know two sides and the angle between them
e Ifwe know all three sides
Example; the length of sides of a triangle ABC area = 5,b = 8andc = 12. Find the

measure of angles of a triangle.
b2+c2-a%? _ 82+122-52 183

Solution; a? = b? + c¢? — 2bccosA = cosA = = =—"=0.9531
2bc 2X8x12 192

m(< A) = cos™10.9531 ~ 18°
a? +c2—b? 52412282 105

b2 = a2 2_2 B= B = = = = 0.8750
a”+ ¢ — caccos €0s 2ac 2x5x12 120
m(< B) = cos™10.8750 =~ 29°
a2 +b%?—c? 5%248%2-122 55
c? =a®*+b?—2abcosC = cosC = = = = —0.6875

2ab N 2x5x8 80

m(< Cg) = cos 1 0.6875 ~ 47°
m(< B) = 180° —m(< Cg) = 180° — 47° = 133°
Activity 3.20
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Given triangle ABC withb = 4,c¢ = 2 and m(< A) = 309, find the measure of angles B and
angles C of a triangle and length of BC = a.

Area law

The area of any triangle is one-half the product of the lengths of two sides times the sine of their

included angle.

l -
That is

1
Area of triangle ABC = Ebc sin A
5acsin

= Eab sin C

Example; Find the area of a triangular lot ABC having lengths AB = ¢ = 90 meters and
BC = a = 52Meter and an included angle m(< B) = 102°

Solution;

1 1
Area of atriangular lot ABC = Sac sinB = ExSme9Om sin 102° = 23405sin(180° — 1029)

= 2340sin 78° = 2340(0.9781) = 2288.8 square meter
Activity 3.21

Find the area of oblique triangles given below;
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Chapter Four
4. Coordinate Geometry

Introduction

Coordinate system or Cartesian coordinate system is sometimes known as a rectangular system
used to uniquely determine a point in two or three dimensional space, by its distance from the
origin of the coordinate system. It gained its name from a French mathematician and philosopher
René Descartes (1596-1650). Coordinate geometry is one of the most important and exciting
ideas of mathematics. In particular it is central to the mathematics students meet at school. It
provides a connection between algebra and geometry through graphs of lines and curves. This
enables geometric problems to be solved algebraically and provides geometric insights into
algebra. Thus the simplest, most useful and most often meet application of coordinate geometry
is to solve geometrical problems.

Coordinate geometry can be used to prove results in Euclidean Geometry. An important aspect
of doing this is placing objects on the Cartesian plane in a way that minimizes calculations.
Coordinate geometry leads into many other topics in school mathematics. The techniques of

coordinate geometry are used in calculus, functions, statistics and many other important areas.
There were three facts of the development of coordinate geometry.

+ The invention of a system of coordinates

+ The recognition of the correspondence between geometry and algebra

+ The graphic representation of relations and functions
In this chapter, we shall consider only the idea of Distance between points, division of line
segments, distance between a point and a line, distance between two lines and general equation

of a straight line and a circle.
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4.1. Distance Formula

The number plane (Cartesian plane) is divided into four quadrants by two perpendicular axes
called the x-axis (horizontal line) and the y-axis (vertical line). These axes intersect at a point
called the origin. The position of any point in the plane can be uniquely represented by an
ordered pair of numbers (x, y). These ordered pairs are called the coordinates of the point.
Where; x is called the x-coordinate and y is called the y-coordinate.

For the point (5, 3), 5 is the x-coordinate and 3 is the y-coordinate, sometimes called the first and
second coordinates. When developing trigonometry, the four quadrants are usually called the
first, second, third and fourth quadrants as shown in the following diagram.

y

2nd Quadrant 1st Quadrant

-2 -1 0 1 2 3 4 5 6
3rd Quadrant 4th Quadrant

-3
Note. Once the coordinates of two points are known the distance between the two points and

midpoint of the interval joining the points can be found.

4.1.1, Distance between Two Points
Distances are always positive, or zero if the points coincide. The distance from A to Bis the same

as the distance from B to A
We first find the distance between two points that are either vertically or horizontally aligned.

e When point P and Q are on a line parallel to the x-axis (horizontal line) as seen in the

figure below;
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P(X1,y1) Q(X2,y1)

XV

The distance between P and Q equals the length of the segment connecting the points,

hence
PQ = |x2 —x1|

e When P and Q are on a line parallel to the y-axis (vertical line) as in the figure below;
2 Y
Q(x1,y2

P(X1,y1)

The distance between P and Q equals the length of the segment connecting the points,

Hence,
PQ =y, — |

In the above two cases we have tried to see the distance between two points where the points are
lie on the vertical line (parallel to the y-axis) or the horizontal line ( parallel to the x-axis). Now
we are going to see the case where the points are lie on a line neither parallel to the x-axis nor

parallel to the y-axis.

In order to derive the formula for the distance between two points in the plane, we consider two
points A(a,b) and B(c,d). We can construct a right-angled triangle ABC, as shown in the

following diagram, where the point Chas coordinates (a,d).
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lb—d|

Ce
(a,d) la—| (c,d)

Fig 1.3
Now using Pythagoras theorem the distance between A and B is denoted by AB and we have

AB? = AC? + CB?
AB?=|b—d|?+]|a—c|?
= (@-0)2+(b-d)?
So

AB =./(a—c)% + (b —d)?
This formula is called Distance formula.
Example; Find the distance between the points
a. A(1, 2) and B(4, 2)
b. A(l, -2) and B(1, 3)
c. A(3,8) and B(11,-7).
Solution;
a. points A and B are lie on a horizontal line y = 2 which is parallel to the x — axis, so
AB=|x, —x;| =4—-1] = 3] = 3.

b. points A and B are lie on a vertical line x = 1 which is parallel to the y —axis, so
AB = |y, —y11=13 = (=2)I= 13 + 2| = |5] = 5.

c. Points A and B are lie one a line neither parallel to the x-axis nor parallel to the y-axis, so

AB=,/(a—c)?+(b—d)2=,/(11-3)2+ (-7 — 8)2 = /(8)2 + (15)2

=64 + 225 =269
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Activity 4.1
1. Find the length of the line segment whose endpoints are (6,-2) and (9,1).
2. Find the distance between the points (4,-8) and (7,-10).

4.1.2 Dividing the Line Segment in a Given Ratio.
i. The Midpoint of a Line Segment
Recall that the midpoint of a segment is the point on the segment that is equidistant from
the two endpoints.
The midpoint of an interval AB is the point that divides AB in the ratio 1 : 1.

B(xz2.y2)

Aly)

X Y
Assume that the point A has coordinates (x1, y1) and the point B has coordinates (xz, y2).

It is easy to see, using either congruence or similarity that the midpoint P of AB is

X1+ X Y1+
2 ’ 2

)

ii. Division of Line Segment in a Given Ratio.
We now generalize the idea of a midpoint to that of a point that divides the interval AB in
the ratio k : 1.
Suppose k > 0 is a real number and let P be a point on a line interval AB. Then P divides

AB in the ratio k : 1 means

Theorem 4.1
Let A(x4, y1) and B(x,, y,) be two points in the plane and let P(x, y) be the point that divides
the interval AB in the ratio k : 1, where k > 0. Then
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Xyt kx i tky,
T YT Tk
Proof
If x;, = X,, then it is clear that x is given by the formula above. So we can assume that x; # x,.

Consider the points C(x, y;) and D(x,, y;), as shown in the following diagram.

B {xzw_}"rz}

Ay, ) Cx,y) D (x2.)4)

AACP~AADBby AA similarity theorem, then

AP B AC _ cp
AB  AD DB
Now
| AP _AC_ kK _xX
" AB AD k+1  Xp—x
= k(x; —x1) = (k+ 1D (x —x,)
:>kX2—kX1 =kx—kX1+X—X1
= kx, +x; = kx +x
= kx, +x; = (k+ 1)x
kx, + x4
X=—"
k+1
Similarly;
i AP _ Pk _ Yy
AB DB k+1 Y2—-V1

= k(y, —y1) =k+ Dy —y1)
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= ky, —ky; =ky —ky; +y -y,
= ky, +y1 =ky+y
= ky, +y, = (k+ 1y
_ ky, +y,
k+1
In general suppose A(x;,y;) and B(x,,y,) are two points in the plane and let P(x, y) is a point
that divides the line segment ABin the ratio m: n, where m > 0 and n> 0. Then

mx,+nx m +n
X = #andy — myz+nys

m+n m+n

Proof; Exercise

Example
Let point Ais (-3, 5) and B is (5,-10). Find
a. The distance AB
b. The midpoint P of AB
c. The point Q which divides AB in the ratio 2: 5.

Solution;

a. point A with order pair (a, b) = (-3, 5) and point B with order pair (c, d) = (5,-10) are

given, then

AB=\(a—c)2+(b—-d)2=(5-(-3)2+(-10—-5)2 =./(8)2 + (—15)%2 = V269
b. let P is a point with order pair (X, y), then

x,+x, —-3+5 2
5+ (-10) -5

c. Let Qisa point with order pair (X, y), that divides line segment AB in the ratio m:n = 2:5.

—2.5

mxy,+nx 2(5)+5(-3 10-15 -5
Then, x = Metma _ 206)45(-3) _ _=5
m+n 245 7 7

_my,+ny; _2(=10)+5(5) _-20+25 5

m+n 2+5 7 7
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Activity 4.2
1. Find the midpoint of the line segment with the given endpoints.
a. (2,4),(01,-3) b. (—4,4), (-2,2)
2. Find the other endpoint of the line segment with the given endpoint and midpoint.
a. Endpoint: (5, 2), midpoint: (-10, -2)  b. Endpoint: (9, —10), midpoint: (4, 8)
3. What is the coordinate of the center of a circle if the endpoints of its diameter are
A(8, —4) and B(—3, 2)?

Slopes and the Angle of Inclination

The slope is a measure of the steepness of line. Suppose | is a line in the number plane not

parallel to the y-axis or the x-axis.

B(xz.y2)
/‘:se
A1) =

run

£

Let Obe the angle between | and the positive x-axis in the counterclockwise direction, where
0% <6 <90° 0r90° < 0 < 180°. then @ is called the inclination of the line I.
Suppose A(x4,y;) and B(x,,y,) are two points on | . Then, the gradient measures or the

steepness or slope of the interval AB is,

VerticalRaise V2=

= = = tanf
HorizontalRun x, — x;

Provided that x; # x,

So tan@is the slope (gradient) of the interval AB. Thus the slope (gradient) of any interval on the
line is constant. Thus we may sensibly define the slope of | is tané.
i.e, The slope (gradient) of a line is defined to be the slope (gradient) of any interval within the

line.
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X=c
¢ Joc
d X X X
0 0 0
positive gradient negative gradient zero gradient no gradient
0°<B < 90° 90° < < 180° 0 not defined 0 =90°

When the gradient or slope is 1, the line makes a 45° angle with either axes. If the gradient is O,
the line is parallel to the x axis. If the line is parallel to the y-axis; the gradient is not defined (the
line has no gradient) because 8 = 90° and tan90 is undefined.
Activity 4.3
1. Find the gradients of the lines joining the following pairs of points. Also find the angle
Obetween each line and the positive x-axis.
a. (1,2)and (7,-4) b. (2,3)and (2,7)
2. A line passes through the point (5, 7) and has gradient 23. Find the x-coordinate of a
point on the line wheny = 13.
3. The line joining (2, -5) to (4, a) has gradient -1. Find a.

4.2, Equation of A Straight Line

Intercepts; All lines, except those parallel to the x-axis or the y-axis, meet both coordinate axes.
Suppose that a line | passes through (a,0) and (0,b). Then a is the x-intercept and b is the
y-intercept of |. The intercepts a and b can be positive, negative or zero. If the line is parallel to
the x-axis and pass through the point (a, 0), then it must cross the x-axis at (a,0). If the line is
parallel to the y-axis and pass through the point (0, b), then it must cross the y-axis at (0, b).
Every straight line can be represented algebraically in the form y = mx + cwhere m
represents the gradient of a line (its slope, steepness),c represents the y-intercept (a point where
the line crosses the y axis)

Furthermore, there are several ways in which you can describe equation of a straight line

algebraically
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4.2.1, Equation of a Line Parallel to the Coordinate Axes
i. Vertical Lines
In a vertical line all points have the same x-coordinate, but the y-coordinate can take any value.
In general, the equation of the vertical line through P(a, b) is x = a.
Example; The equation of the vertical line through the point (3, 0) is x = 3. The x- intercept is 3.

All the points on this line have x-coordinate 3.

ii. Horizontal Line
A horizontal line has gradient 0. In a horizontal line all points have the same y-coordinate, but
the x-coordinate can take any value. In general, the equation of the horizontal line through
P(a, b) isy=nh.
Example; the equation of the horizontal line through the point(0, 7) isy = 7. The y-intercept is7.

All the points on this line have y-coordinate 7.

4.2.2, The Point-Slope form Equation of a Line
Consider the line | which passes through the point (x1, y1) and has gradient (slope)m.

m = tan0

Let P(x, y) be any point on I, except for (x1, y1). Then

y—h
m =
x_xl

and so
Y=y =mx—xq)
This is the equation of the straight line | with gradient m passing through the point (X1, y1) and
the equation is called the point—slope form of equation of a line .
Example; Find the equation of the line through (3,4) with slope 5.
Solution; let | be a line through the point (x1, y1)=(3, 4) with slope m= 5. Thus
y—yi=mx—x)=y—4=5(x-3)

185



=y=5x—-15+4

= y = 5x — 11 is equation of a line |

4.2.3. The slope-intercept form of Equation of a Line.
Suppose that (x1, y1) = (0,c) which is the y-intercept of the line with slope m. Then the equation
is

y—c=m(x—0)
or, equivalently,

y=mx-+c

Where; c is y-intercept and m is slope of the line. This is often called the slope-intercept form
of equation of a line.
Example; the gradient of a line is —6 and the y-intercept is 2. Find the equation of the line

Solution; let | is a line with slope -6 and y-intercept 2. Then we use slope—intercept form of
equation of a line.
y=mx-+c
=>y=—6x+2
is equation of the line I.

4.2.4 The Two point form Equation of a Line
To find the equation of the line through two given points (x1, y1) and (X2, y2), first find the
gradient (slope);

E (Xz.-,'lr"rzj
(x1.31)
m= Y2~ Y1, provided x; # X,
X2 — X1

and then use the point-slope form

y—y1 =m(x —xq)
ZYZ_Yl

Yy =W xz_xl(x—xl)

This equation is called the two point form of equation of a line |.

A special case is the line through (a, 0) and (0, b), where a, b # 0.
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In this case, the gradient (slope) is

Thus the equation of the line is

y-0=—(@-a
ay = —b(x —a)
ay + bx = ab
This is called the intercept form of the equation of a line.
Activity 4.4
1. Find the equation of the line through (3,4) and (-2,-3).
2. The lines y = 4x — 7 and 2x + 3y — 21 = 0 intersect at point A. The point B has
coordinates (-2, 8). Find the equation of the lines that passes through points A and B.

4.2.5 General Form of Equation of a Straight Line

One of the axioms of Euclidean geometry is that two points determine a line. In other words,

there is a unique line through any two fixed points. This idea translates to coordinate geometry

and, as we shall see, all points on the line through two points satisfy an equation of the form

ax + by + ¢ = 0 with a and not both 0. Conversely, any ‘linear equation’ ax + by + ¢ = 0 is the

equation of a (straight) line where a, b and c are real number. This is called the general form of

the equation of a line.

Example; Find the general form of equation of a line | on the point (3, -5) and meet the line with
equation 7x-3y =2 at x = 2.

Solution; 7x-3y = 2, = y = Ix — 2atx = 2 thevalueofyis 4

i.e the points (3,—5)and (2,4) must lie on the line L, (X1, y1) = (3, -5)and (x2, y2) = (2, 4),

This implies the equation of the line is
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Y_Y1=y2_y1(x_x1)
X2 — X1

4 —(-5)

2-3

y=-9x+27-5

y =-9x + 22

y—(=5) = (x—3)=2(x—3)
Thus ,y + 9x — 22 = 0 is the general form of equation of a line |

4.3 Parallel, Intersecting and Perpendicular lines
The axioms for Euclidean geometry include: Two lines meet at a point or are parallel. Among
those pairs of lines which meet, some are perpendicular.

{

-

The most important thing you need to know about parallel and perpendicular lines is that the
relationship between parallel lines is a relationship between the slope of the lines, and the same

goes for perpendicular lines.

4.3.1 Parallel Lines

Two lines are parallel lines, if they lie in the same plane and do not intersect. On the above
figures the middle ones, lines | and n are parallel lines. You can write thisas | // n.

If two lines liand l.are parallel then corresponding angles with the reference of the horizontal
line are equal. Conversely, if corresponding angles with the reference of the horizontal line are

equal then the lines are parallel.

Clearly, two horizontal lines are parallel. Also, any two vertical lines are parallel. If lines | and n
are not parallel, then their point of intersection can be found by solving the equations of the two
lines simultaneously.

Theorem 4.2

Two lines are parallel if they have the same slope and conversely, two lines with the same slope
are parallel.

Proof; Exercise
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This property is fairly easy to understand why it is true. Remember that the slope of a line
represents the steepness of the line. So, if two lines are parallel, they would have to have the
same steepness, otherwise they would eventually intersect, making them no longer parallel by

definition.

Example; Show that the line passing through the points A(6, 4) and B(7, 11) is parallel to the
line passing through P(0, 0) and Q(2, 14).
Solution: let L, is a line passing through the points A(6, 4) and B(7, 11), then the slope is

yo=yi _11-4 _
XZ_xl 7_6

And letl, is a line pass through the points P(0, 0) and Q(2, 14), then the slope is

my =

Yo—y1 14-0 4,
m, = = =

=7
xz_xl 2_0 2

Both [,andl, are the same slope, and then they have parallel to each other,
If two non-vertical lines are parallel then they have the same slopes. Conversely if two non-

vertical lines have the same slopes then they are parallel.

4.3.2 Perpendicular Lines

Two lines are perpendicular lines, if they intersect to form a right angle. Lines s and t are
perpendicular lines, you can write this as s Lt. All vertical lines x = a are perpendicular to all
horizontal lines y = b.
Two non- vertical lines are perpendicular if and only if the product of their slopes is -1.
Conversely if the product of the slopes of two lines is —1 then they are perpendicular.
Note:let line [;hasslope m;and cross the y — axis aty = ¢, line [, has slope m,and cross the
y-axis at y = d, then

v Ifmy = myandc # d then 1, // L,.

v If my = myandc = d then |_1 coinsideswithl_2 (they are identical).

v If m = —miz thenl; L1,

v If m; # mythenl,andl, meet at a point.

Activity 4.5

Find the equation of the line | through (1,3) perpendicular to the line 2x + 3y = 12. Find
the equation of the line through (4,5) parallel to | .
2. Find the equation of the line which passes through the point (1, 3) and is perpendicular to

the line whose equation isy = 2x + 1.
3. Determine if the two lines are parallel.

a. The line passing through the points (-2, 1) and (4, 3)

The line passing through the points (3, -2) and (5, -1)
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b. 5x+6y =1 and 2-5x-3y =10
4. Find equation of the line perpendicular to 3x + 4y = 4, passing through the point (-4,-2).
5. For each pair of lines, determine whether they are parallel, identical or meet. If they meet,
find the point of intersection and whether they are perpendicular.
a. y=2x-5andy=5x-5
b. 2y=8x-land 4y-16x+2=0

4.4 Perpendicular Distances

4.4.1 Distance between a Point and a Line
Given a line | with equation ax + by + ¢ = 0a# 0,b # 0 and a point P(x1, y1)not on the line, then
the distance d of P from | is;

y

P(xw.y1) -~ i lax, + by, + |

ax+by+c=0 va? + b?

Example; how far is the point (3,-2) from the line 2x +3y -2 = 0?
Solution;x; =3, y;, = -2, a=2,b=3,and c =-5, then

g lax; + by; + | B |2x3 + 3x(—2) + (-5)| B |6 — 6 — 5] B |—5]| B 5vV13
N V13 Vito Vi3 13

4.4.2 Distance between Two Lines;
Given any two lines, they could have the following three properties;

v' They may cross each other

v' They may coincide or

v' They may not cross each other.
The distance between two intersecting lines or coincides to each other is always zero. To deal
about distance between two lines, consider the lines are parallel otherwise the distance between
these lines is always zero.
The distance between two parallel lines is the same as the distance between the point lie on one

of the straight line to other straight line.
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Steps to find distance between two parallel lines;

I. Take a point from one of the given lines

ii. Find the distance from the point taken in step one and the other lines

iii. The distance obtained in step two is the same as the distance between the two lines
Example; find the distance between the following pair of lines;

a. 5x +12y =26and 12y = —5x+ 20

b. 2x—-7y=24and3x+ 2y = —6

c. 14x+30y=42and7x+15y—21=0

4.4.3 Angle between Two Intersecting Lines

Let 0 <pB <m is an angle between two intersecting lines l; and l>have slope mj;and m,
respectively; measured in counterclockwise direction, thenm — £ is also an angle between I and
l>. Assume that a, is an angle between the line |1 and the positive x-axis and a, is an angle
between the line I, and the positive x-axis, both measured in counterclockwise direction.

Therefore m;= tana; and m; = tana,.

A

v

v

In AABC the exterior angle is equal to the sum of the two opposite interior angles
e, tf=a,=>F=a,—a;
Hence

tanf = tan(a, — aq)

_ tan ay—tan a4 _ mp—my

- - , if m1m2 :rt _1
1+tan a4 tan a, 1+mim;

m; —my
p = arctan(——
1+ m;m,
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Example; Find the angle between the linesy —2x —1=0andy +3x —2 = 0.
Solution; Let g is an angle between these two lines; slope of a line with equation with equation
y—2x—1=0 ism; =2 and Slope of a line with equation with equationy +3x -2 =0

ism, = —3, then

mz_ml_ _3_2 _ _5 __5_1

1+mm, 1+2(-3) 1-6 -5

_ mz_ml _ _ O—E
p = arctan (—1 n m1m2) =arctan(1) = 45° = 2

T

Then, the angle between the linesy —2x —1=0andy +3x -2 =01isf = -

4.5 Equation of a Circle.
Definition of a Circle

Definition:-A circle is the set of all points in a plane that are equidistant from a fixed point on

the plane called the center of the circle.

(

If the center of a circle is point O, the circle is called circle O. A radius of a circle (plural, radii)
is a line segment from the center of the circle to any point of the circle. If A, B, and C are points
of circle O, thenOA,0B and OCare radii of the circle. Since the definition of a circle states that all
points of the circle are equidistant from its center O, 0OA = OB = 0C, This implies that all radii
of a circle are congruent (equal in length).
Circle separates a plane into three sets of points. If we let the length of the radius of circle O is r,
then:

» Point Cisonthe circle if OC =r.

» Point D is outside the circle if 0D > r.

» Point E is inside the circle if OE <.

D
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The interior of a circle is the set of all points whose distance from the center of the circle is less
than the length of the radius of the circle.
The exterior of a circle is the set of all points whose distance from the center of the circle is
greater than the length of the radius of the circle.

i. Equation of a Circle with Centered at the Origin.
The simplest case is that of a circle whose centre is at the origin. If we take any point P(X, y) on
the circle O, then OP =r is the radius of the circle. From the figure below, OP is the hypotenuse
of the right-angled triangle OPN, formed when we drop a perpendicular from P to the x-axis. In
the right-angled triangle OPN, ON = x and NP =.

&

2

Thus, using the Pythagoras theorem,

x2+y?=r
This is the equation of a circle with radius r and centre at the origin O(0, 0).
Thus,

The equation of a circle of radius r and centre at the origin is

X%+ y? =712

iii. The General Equation of a Circle
The general form of equation of a circle C of radius r, centered at the point C(a, b)= O(0, 0). If

we take any point P(x, y) on the circle C,

0
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We shall take a horizontal line through the centre C and drop a perpendicular from P to meet this
horizontal line at N (x, b). Then again we have a right-angled triangle CPN, where CP = r is the
hypotenuse, and where we have CN = x —a and PN = y — b. Thus using Pythagoras theorem
we have;
CN? + PN? = CP?
= (x—a)’+(y—-b)?=r?

The standard form of general equation of a circle with center at C (a, b) and radius r is
(x—a)+—-b)?=r2=k

Depending on the value of k, the following situations occur
+ k >0The equation represent a circle with center (a, b) and radius r = vk
+ k = 0The only solution of the equation is x = a, y = b, so the equation represent a single
point (a, b).
+ k<0The equation has no real solutions and consequently doesn’t represent equation of
a circle.
From the above standard form equation of a circle expanding the brackets gives
x? —2ax + a? + y? — 2by + b% = r?
Bring 2 to the left hand side and rearrange we get
x?—2ax+y?—=2by+a?+b?>—1r2=0
Letd = a? + b? — r?; then
x?—2ax+y?—-2by+d=0
is the general form of equation of a circle C, with center C(a, b) and radius
r=J@2 b —d

Thus;

The general equation of a circle is
x?—2ax+y?—=2by+d=0

Exd
Where the center is C (a, b) and radius r = va? + b? — d

2. Find the equation of a circle passing through the point (5, 12) with centre at the origin.

Solution; given P(x, y) = (5, 12), but the equation of a circle of radius r and centre at the
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origin is
x2 +y2 =12
r2=x%4+y?2=>52+122=25+144 =169
Thus the equation of a circle is
x2+y?=7r2=169
3. What is the radius and the centre of a circle with equation (x - 2)? + (y - 5)2 = 18?
Answer; the radius is 3v2 and the center is (2, 5).
4. Find the centre and radius of the circle represented by the equation
x2+y?+ 10x + 6y — 2 =0
Solution; rewrite the equation as x? — 2(=5)x + y2 = 2(-3)y — 2 =0
This implies that a = -5, b = -3 and d = -2 and then the center is C(a, b) = (-5, -3) and

Radiusr = Va? + b2 —d =/(=5)2 + (-3)2— (-2) =V25+9+2 =36 =6
Activity 4.6
1. Find the center and radius of the circle with equation
a X+y—8x+2y+8=0 d. 2x2 + 2y~ 8x — 7y =0.

b. (x+1)*+(y+3)*=5 e. X2+ Yy~ 4x—6y+13=0
C. X+ (y+2)32=1 f.x2+y+8x+8=0
Exercise 4.4

1. The distance between the points (1, a) and (4, 8) is 5. Find the possible values of a.

2. Show that the distance between the points A(a, b) and B(c, d) is the same as the distance
between the points P(a, d) and Q(c, b).

3. Find the midpoint of the line segment with the given endpoints.
a. (-4,4),(5,-1) b. (-1, -6), (-6, 5)

4. Find the other endpoint of the line segment with the given endpoint and midpoint.
a. Endpoint: (-1, 9), midpoint: (-9, -10)  b. Endpoint: (2, 5), midpoint: (5, 1)

5. One endpoint of a line segment is (8, —1). The point (5, —2) is one-third of the way from
that endpoint to the other endpoint. Find the other endpoint.

6. A square has vertices O(0, 0), A(6, 0), B(6, 6) and C(0, 6).
a. Find the midpoint of the diagonals OB and CA.

b. Find the length of a diagonal of the square
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10.

11.

12.

13.

14.

15.

16.

17.

Find the gradients of the lines joining the following pairs of points. Also find the angle
Obetween each line and the positive x-axis.

a. (2,3)and (5,3)b. (1,2)and (7,8)

Find the gradients of the lines joining the following pairs of points:

a. (ap®2ap), (ag’,2aq)

b. (acos 6, bsing), (acosP,bsinp).

Find the equation of the line with x-intercept 3 and y-intercept -5.

An equilateral triangle OBC has coordinates O(0, 0), B(a, 0) and C(c, d).

a. Find c and d in terms of a by using the fact that OB = BC = CO.

b. Find the equation of the lines that contains the intervals OB, BC and CO.
The line y = 2x - 4 meets the x axis at point A. Find the equation of the line with gradient
2/3 that passes through point A.
Find the equation of the line passing through the origin and perpendicular to the line
whose slope is 1.
Find the equation of the line passing through the (3,-1) and parallel to the line with
equation 2x + 4y =1.
Show that the line through the points A(6, 0) and B(0, 12) is perpendicular to the line
through P(8, 10) and Q(4, 8).
Determine whether or not the two lines are parallel.
a. The line passing through the points (5,-2) and (6, 2)

The line passing through the points (4, -3) and (8, 4)

b. ax+by=candax+by=0,4a,b,c# 0
For each pair of lines, determine whether they are parallel, identical or meet. If they meet,

find the point of intersection and whether they are perpendicular.
a. 4y-3x—-18=0and3y+4x-1=0
b. 2y=6x+12andy-3x=7

Write the equation of a circle with;

a. Center: (13, —13) c. Ends of a diameter: (18, —13) and (4, —3)
Radius: 4 center at the origin

b. Center: (—13, —16) d. Center: (0, 13)
Point on Circle: (—10, —16) Area: 251
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Summary of the unit

The number plane (Cartesian plane) is divided into four quadrants by two perpendicular
axes called the x-axis (horizontal line) and the y-axis (vertical line). The position of any
point in the plane can be uniquely represented by an ordered pair of numbers (X, y). These
ordered pairs are called the coordinates of the point.

Distances are always positive, or zero if the points coincide. The distance from A to B is
the same as the distance from B to A.

The distance between point A has coordinates (x1, y1) and point B has coordinates (X2, y2)
iS;

d=(x;— %)%+ (v, — y1)?
Suppose A(x,,y,) and B(x,,y,) are two points in the plane and let P(x, y) isa point that

divides the line segment AB in the ratio m : n, where m > 0 and n> 0. Then
— mX2+nX1andy — myp,+nyq
m+n m+n

The slope is a measure of the steepness of line. The inclination of the line lis the angle 8
between land the positive x-axis in the counterclockwise direction, where 0° < 8 < 90°
or 90° < 9 < 180°. Suppose A(x;, y;) and B(x,,y,) are two points on | . Then, the
slope of the interval AB is,

Vertical Raise y, —y

m = L = tan@
Horizontal Run x, — x4

Provided that x; # x,

Form of equation of a straight line;
+ Equation of a Line Parallel to the Coordinate Axes
+ The Point-Slope form Equation of a Line
+ The slope-intercept form of Equation of a Line
+ The Two point form Equation of a Line
+ General Form of Equation of a Straight Line
Two lines are parallel lines, if they lie in the same plane and do not intersect.
Two lines are perpendicular lines, if they intersect to form a right angle.
Let linel, has slope m, and cross the y-axis aty = c, linel, has slope m, and cross the y
—axisat y =d, then;
+ If m; = myandc # dthenl,// L,.
+ If m; = myandc = d then [, coinsideswithl,(theyareidentical).

+ If m; # mythenl andl, meet at a point.
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Given a line | with equation ax + by + ¢ = 0a# 0,b # 0 and a point P(x1, y1)not on the
line, then the distance d of P from | is;
- lax, + by, + c|
JaZ + b2

The distance between two intersecting lines or coincides to each other is always zero. The

distance between two parallel lines is the same as the distance between the point lie on
one of the straight line to other straight line.
Let 0 <pB <m is an angle between two intersecting lines l. and l>measured in

counterclockwise direction have slope m;and m, respectively. Then;

)

B = arctan( e

1+ m;m,
A circle is the set of all points in a plane that are equidistant from a fixed point on the
plane called the center of the circle.

Equation of a circle with radius r and centre at the origin and point p(x, y) lie on circle is

x2 4+ y2 =12

The general equation of a circle is
x?—2ax+y?>—-2by+d=0
Where the center is C (a, b) and radius r = Va? + b2 — d
The standard form of general equation of a circle with center at C (a, b) and radius r is

(x—a)+(y-b)?2=r*=k
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